リーダーシップ・キャリアビジョン入門

理論と実践で拓くやる気の秘密

基礎理論をどう捉える? 今回の学びとして、モチベーションとインセンティブの関係性について理解が深まりました。具体的には、マズローの欲求5段階説やX理論・Y理論、さらには動機付け・衛生理論といった基礎的な理論を踏まえ、相手のモチベーションを的確に理解することの重要性を再確認しました。 経験をどう活かす? また、コルブの経験学習モデル(具体的経験、内省的観察、抽象的観察、能動的実験)を意識することで、実体験からの学びを最大限に引き出す方法にも気づくことができました。今後は、周囲の人々のモチベーションの源泉を把握するために、コミュニケーションを重ねながら、効果的な働きかけを模索していきたいと考えています。 振り返りの意義は? さらに、業務の振り返りの機会を定期的に設けることで、単なる数値だけでなく、その背景や考え方についてもチーム内で共有するよう努めます。このプロセスを通じて、別の案件にも応用可能なノウハウや自身の持論を整理し、より実践的な成果に結び付けていければと思います。

クリティカルシンキング入門

イシュー決定で問題を攻略

なぜイシューが重要? イシュー(問題の焦点)を決定するプロセスは非常に重要です。事象を細かく分解し、状況を正確に把握することで、数字やグラフといった表面的な情報だけに頼らず、着地点が大きく変わるのを防ぐことができます。「何について考えるのか」という問いは、明確かつ具体的である必要があり、今回の学習では、そのおかげでスムーズに効果的な解決策を導き出すことができました。決めたイシューから逸れないよう、常に意識することの大切さを実感しました。 対策はどう進める? 業務では複雑な問題に直面することが多く、以前は一度に解決しようとして非常に抽象的な問いを立てていたため、具体的な施策や対策に結びつかないことがありました。そのため、問題をひとつひとつ丁寧に分解し、原因や背景を詳しく把握する方法を取り入れることにしました。資料作成時には、イシューを明記しておくことで忘れずに意識し、会議の際はホワイトボードに記載してメンバー間で共有しながら議論を進めるなど、具体的な取り組みを実践しています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

現場で磨く仮説思考の実力

仮説思考の大切さは? ビジネスの現場において仮説思考の重要性を学びました。特に、結果の仮説と問題解決の仮説の両面について、過去・現在・未来という時間軸で考える視点が自分の理解を整理する大きな助けとなりました。 内部監査で疑問は? 私は内部監査の業務に携わっているため、問題解決の仮説を立てる際は、「問題は何か」「どこが問題か」「なぜ問題が起きているのか」「どうすればよいのか」という流れ(WHAT→WHERE→WHY→HOW)に沿って検討することが求められます。たとえば、ある事業計画がどのような前提に基づいて構築されているのか、将来の結果に対する仮説についても考える必要があると感じました。 仮説の整理方法は? さらに、自分が提示する仮説や被監査部門の結果としての仮説は、フレームワークを適宜活用し、抜け漏れなく論点を整理することが重要です。実際、問題の特定には成功しても、原因の深掘りが不十分な場合が多いことから、今後はその点にさらに注意して取り組んでいきたいと考えています。

クリティカルシンキング入門

具体と抽象で変革する思考法

思考の癖に気づく? 人は、思考しやすい方向に引き込まれてしまう「思考の癖」に気づきました。特に、急いで結論を出そうとすると、考えが偏りやすくなるという実感を授業中に抱きました。そのため、具体と抽象を交互に繰り返す手法の重要性を学び、自分自身で十分に実践できていなかったことを反省しました。今後は、焦らずこの手法を意識的に取り入れていきたいと考えています。 講師の工夫は何? また、講師の方々が自身の思考の癖を認識し、それを補うための独自の工夫をしている姿勢に強く感銘を受けました。私も自分に合った工夫を見つけ、実践することで、より効果的な思考法を身につけたいと思います。 具体抽象の整理法は? さらに、これまで資料作成は同僚とのディスカッションを重ねながら行っていましたが、今後は「具体と抽象」を意識することで、情報の抜け漏れや重複を防ぎつつ、3つの視点から思考を広げる工夫をしていく予定です。頭の中だけで整理するのは難しいため、図表など自分に合った方法で整理を進めるつもりです。

データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

リーダーシップ・キャリアビジョン入門

聞く力を磨く!チームの心をつかむ方法

聞く姿勢、どう高める? 聞く力の重要性を改めて実感しました。私にはまだ十分な聞く力が備わっていないと感じています。このため、現在所属している有志メンバーのチームにおいても、各メンバーの状況や気持ちに配慮できるよう質問力を強化したいと思っています。単に聞くのではなく、意図して聞くことを実践していきたいと考えています。 どうやって全員交流? 部署が異なるため、定期ミーティングの場だけでは関わりが限られ、全てのメンバーと顔を合わせることは難しい状況です。そこで、日ごろから使用しているグループチャットを活用し、業務の忙しさやそれぞれの背景、状況を深く理解するためのコミュニケーションを実践していこうと考えています。 個々の悩み、どう理解? 「聴く」ことを意識的に行うためには、部署による業務の違いや繁忙期と閑散期、日勤シフトや夜勤のある業務など、それぞれの大変さや有志活動における個々の悩みを理解することが不可欠です。個々を深く知る意識を持ちながら、この活動を進めていく所存です。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

「方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right