データ・アナリティクス入門

視覚化で輝く数値のストーリー

平均値の限界は? 平均値は計算が容易で意味も通じやすいことからよく用いられますが、ばらつきの情報が考慮されていないため、正しい情報を得る上では限界があります。代表値だけではデータ全体を俯瞰し、妥当性を確認するのが難しいため、データのビジュアライズ化が重要だと感じます。 なぜ見せる工夫が必要? 受領したデータの全体像を把握するため、代表値の算出に加え、ビジュアライズ化を実施することにしています。普段はExcelを使用し、関数を活用して代表値を手軽に算出しているため、この作業の頻度は高いです。しかし、ビジュアライズ化は目的を踏まえた「見せ方」を検討する過程があるため、どうしても敬遠しがちです。そこで、この工程も積極的に実施するよう努めています。 効率化はどのように? また、代表値の算出を効率化するために、算出用の雛形シートを作成し、使い回せるように準備しておきます。ビジュアライズ化については、データ確認結果を部内で共有する際に、誰にでも説明しやすい資料作成を心がけています。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

クリティカルシンキング入門

データ切り口で見える解約の真実

データはどう活かす? データ自体を見るだけではなく、その見せ方を工夫することで、グラフ化したり比率を示したりするなど、異なる視点から事実が浮かび上がることが分かりました。さらに、データを様々な切り口から分析することで、明確な傾向が見えてくると同時に、その切り口に意味があるかどうかが重要であると感じました。 解約傾向は何だ? また、解約企業の傾向(解約時期や解約理由など)を詳細に分析することで、必要な施策を適切なタイミングで実行できるのではないかという考えに至りました。そこで、復習も兼ねて、以下の点について取り組んでみることにしました。 施策実行の鍵は? まず、解約企業のリストを作成し、解約理由を細かく分解してデータ化します。さらに、解約企業の利用状況を抽出し、解約前の利用状況も分解してデータ化することで、今後の活動施策への活用を目指します。これにより、既存顧客へのアプローチの際、重点的に注力すべきポイントを明確にすることができると考えています。

クリティカルシンキング入門

グラフで見える未来の地図

■ お客様向けライフプラン資料作成の工夫 資料作成の何がポイント? お客様がご自身のライフプランを一目で理解いただけるよう、資料作成にあたって表やグラフの活用を意識しています。エクセルを使い、見やすさを重視したレイアウトで情報を整理する方法についてご紹介します。 年齢軸の意味は? まず、横軸にお客様の年齢を記入し、90歳までの年齢を分かりやすく並べます。縦軸には、子どもの学資、保険、NISAなど各種資金計画の項目を配置し、必要な情報が一目で確認できるように工夫しています。 未来設計のヒントは? また、実際にお客様のライフプランについてお伺いする際は、たとえば「何歳でどのくらいの金額を貯める」といった具体的な目標や、子どもの大学進学に必要な資金が必要となる時期など、各ご家庭のニーズに合わせた情報をまとめる予定です。こうしたグラフを活用することで、お客様と一緒に将来の計画を立てる際、視覚的に理解しやすい資料としてご利用いただけると考えています。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

リーダーシップ・キャリアビジョン入門

問いかけが引き出す組織の成長

エンパワーメントの意味は? リーダーシップを学ぶ中で、エンパワーメントという概念の重要性に気づきました。組織の成果を上げるためには、相手をどのように動かすか、どうすれば相手が動きやすくなるかという視点が大変大切だと実感しています。 部下の意見を聞く? 部下に対しては、目標設定の際に彼らが参加し、納得できるような問いかけを心掛けたいと考えています。たとえば、「どう思う?」や「意見を聞かせてほしい」といった言葉を用いることで、部下それぞれの意見を尊重し、積極的なコミュニケーションを促したいと思います。 目標はどう合わせる? また、リーダーとしては、個人のゴールと組織のゴールが自然と繋がるような指導を進める必要があると感じています。具体的には、目標面談を通じて月次目標の立て方や、部下自身がどのように組織に貢献できるかをしっかりと聞き出し、上司として自らはどのようなエンパワーメントが成長につながるのかを考える機会とするつもりです。

データ・アナリティクス入門

「分析力を鍛える成功への鍵」

分析の本質は何か? 分析とは、他者との比較に基づいたものであることが重要です。ただデータを平均や中央値で計算するだけではなく、意味のある計算を行わなければなりません。相手に課題や成果をわかりやすく伝えるためには、相手が求めている情報をしっかりと表現することが求められます。 分析の必要性をどう示す? 分析を始める際には、その必要性を相手や受講者に示すことが重要です。まず現在の状況を把握し、そのうえで必要となる目標や合格ラインとのギャップを明らかにします。これは、会社の目標や業界平均などを基準にすることができます。 成長を示すための視点は? 他者と比較した際のウィークポイントや、成長を示すような経時的な変化を提示することも大切です。自分自身の経験だけでなく、他者の成功例を活用することで、さらに多くの知識を身につけることができます。これにより、他者にとってわかりやすく、行動変容につながるデータの提示や説明が可能になると考えます。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

クリティカルシンキング入門

データ分析で見つける、次の一手

分析の進め方はどう? 目の前の数字だけで判断しがちですが、一歩踏み込んで分析することで、より詳細で解像度の高い状況にたどり着ける可能性があることが分かりました。情報の収集とその情報の分析に工夫を加えることの重要性を学びました。 データ活用に自信は? 問い合わせ者データや来場者データ、購入者データなど、さまざまなデータを保有していますが、これらを有効に活用できていないかもしれないという良い意味での疑念を持ちました。それぞれのデータを分析して歩留まりの数や率を向上させるため、具体的な施策を行っていますが、より効果的な施策を実現するために、各段階での分析作業を実施する必要があると感じました。 改善点は見えてる? アンケートデータの分析(分解)を通じて、改善点を効果的に導き出すことができそうです。実施予定の施策の効率や効果性を向上させることができれば、得られる成果を今より大きなものに変えられるかもしれないと実感しました。

クリティカルシンキング入門

数字を超えた視点の冒険

数字の見方は本当か? 数字をただ見るのではなく、視覚化やグラフ化することで、より多角的な意味を見出すことができると実感しました。また、MECEの基本的な考え方についても理解が深まり、モレやダブりを意識することの重要性を学びました。「本当にそうか?」と問いかけるプロセスが、短絡的な結論を避ける上で大切だと考えます。 疾患領域はどう選ぶ? 新規薬剤や新たな事業領域の開発を考える際、まずは対象となる疾患領域を絞り込む必要があります。さらに、その絞り込んだ後のポピュレーションや、疾患の重篤度、患者数、事業性、競合環境など、さまざまな切り口からニーズの有無を検証することが求められます。 課題分解は的確か? また、課題をどのように分解し、分解が適切に行われているかを意識することも重要です。一人で考え込むのではなく、メンバー間で様々な視点を共有し、切り口のアイデアやモレ・ダブりの有無を話し合いながら進めていくことが効果的だと感じました。

「必要 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right