データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

戦略思考入門

共通認識が開く改善の扉

議論の進め方は? 同じテーマを複数人で検討する場合、効率的かつ効果的に進めるためには、目的やゴールに沿ってどのように議論を進めていくのか、検討すべき要素に共通の認識を持つことが不可欠です。これを整理しないと、各人が自分の関心に基づいて検討を進めてしまい、視点がずれてしまいます。 どうやって認識合わせ? 共通認識を形成するためには、まず検討対象を俯瞰的に捉え、漏れなく重複なく要素を抽出することが重要です。その際、3C分析、SWOT分析、バリューチェーン分析などのフレームワークが非常に有用です。 改善策はどうする? 具体的なアプローチとしては、まず自分が担当している事業について、これらのフレームワークを活用して分析を行います。そして、その分析結果を同じチームのメンバーと共有し、今後の改善策について議論することが求められます。特に、バリューチェーンのどこに課題があり、コスト分析を通じてどの部分がネックとなっているのかを明らかにすることが、改善策の策定に役立つと感じました。

クリティカルシンキング入門

ナノ単科で始める自分再発見

どうして自己批判? クリティカルシンキングとは、自身を批判的に捉えることで、他者に納得感を与えるための思考法です。その実践により、自らの意見や行動の根拠を客観的に見直すことが可能になります。 なぜMECEを使う? また、思考を始める際には、まず抽象度の高い項目をMECE(漏れなくダブりなく)に整理することが推奨されます。一見遠回りに感じられるこのプロセスですが、結果として迅速に内容が整理でき、論理的な考察に繋がります。 広告の位置づけは? さらに、お客様への情報刺激として広告の役割を考える際は、該当施策が全体像においてどの位置づけにあるのか、俯瞰的な視点で判断することが重要です。自身の経験や一見した印象だけに頼らず、客観的な検証が求められる場面です。 上司提案はどうする? さらに、上司への提案を行う場合には、あらかじめ自分の意見に対する批判的な視点を持ち、予想される反論に対して準備をしておくことが有効です。これにより、説得力のある提案が実現できます。

マーケティング入門

STPで商品価値が変わる!?学びの実感

STP再評価だけで成長? 企業の事例を通して学んだことで、商品自体を変更しなくてもSTPを再評価するだけで、ビジネスを成長させることができると理解が深まりました。また、ポジショニングを検討する際には、自社視点ではなく顧客視点でポイントを絞って売り出すことの重要性を学びました。 コンセプト調査の重要性とは? コンセプト調査を行った際の結果分析時に、特にSTPの重要性を感じました。STPをしっかりと定めることで、その後のプロモーションや施策に一貫性を持たせることができると確信しました。また、新商品の企画を考える際には、ポジショニングマップを作成し、差別化ができているかの確認を行いたいと思います。 自社の強みをどう活かす? さらに、自社の既存商品をSTPにあてはめて分析することで、自社の強みや他社との差別性を理解できました。こうして理解した自社の強みを書き出し、顧客視点でも強みかどうかを再確認し、複数の強みをかけ合わせながら新商品の企画を構築していきたいと考えています。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

クリティカルシンキング入門

営業プロセスの巧みな分解で成果倍増

どのようにプロセスを整理する? 営業成績を振り返る際に、プロセスをMECE(Mutually Exclusive, Collectively Exhaustive)に分解して整理するという視点が欠けていました。プロセスの分解自体は行っていたものの、その後の分析が不十分だったと感じています。今後は、この点を業務に活かしていきたいと思います。 問題解決に向けた分解思考 営業活動において、顧客を業界や職種で分解するだけでなく、自分の仕事のプロセスも細かく分解しました。その結果、どこに要因があり、何を解決すれば問題の特定につながるのかが明確になりました。このような分解という思考を、日々の活動に取り入れていきます。 課題特定のためのアプローチは? 具体的には、まず自分の営業プロセスを分解し、どこに課題があるか特定します。次に、顧客と受注の傾向も分解し、その中で自分の課題やポジティブな傾向を探っていきます。さらに、このアプローチを部下にも活用していこうと考えています。

クリティカルシンキング入門

学びとデザイン、心動く瞬間

視覚情報の伝え方は? 内容だけでなく、視覚的情報を如何に伝えるかが非常に重要であることを実感しています。デザイン表現については個人の感覚に左右される部分が大きく、「一般的な分かりやすさ」とは何かを理解するために、さらなる学びが必要だと感じています。 伝達での悩みは? また、作業指示や上からの連絡事項を正確に伝える文章を作成することで、チャットやメールの往復が減り、その都度文章を考える時間やストレスが軽減できると考えています。分かりやすい文章作成は、結果としてチーム全体のコミュニケーションの向上につながるのではないかと思います。 どう学び活かす? さらに、以下の点にも取り組んでみたいと考えています。 ・宣伝やチラシなどの広告に興味を持ち、世間のさまざまな表現からヒントを得ること。 ・使える表現やデザインはキャプチャしておき、自分の資料作りのネタにすること。 ・作成した資料について、第三者に見てもらい、見やすさや伝わりやすさの点で意見をもらうこと。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

データ・アナリティクス入門

データ分析の未来を対話で掘り下げる学び

データ分析の重要性を再考するには? 講座全体の学びを振り返ることで、データを分析してビジネスに活かすとはどういうことかを再考する良い機会となりました。基礎的な内容を再び学ぶことで、受講者がどの部分に関心を持っているのかを把握でき、自分の講座を作る際の参考になりました。 対話セッションのメリットとは? データ分析の講座を設計する際、受講者の理解を深めるための施策を考えました。その結果、受講者同士が対話を通じて学びを深めることが有用だと感じました。この対話セッションはどんなコンテンツにも適用できるため、今後自分が企画する講座にも組み入れたいと考えています。 持続的な知識吸収をどう行う? データ分析の知識を吸収し続けることは、今後も継続して取り組むべき課題です。自分の関わる案件でも、ビジネスにどうデータを活用できるかを常に検討していきます。また、受講者同士の対話型セッションを設計し、どのような項目でどのように深めていくかの具体的な内容を決める作業も続けていきます。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

「結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right