データ・アナリティクス入門

比較と目的で開く新発見

何を比較すべき? 分析について学んだことは大きく3点あります。まず、分析は何かと何かを比較することで初めて意味を持つという点です。単に数値を並べるだけではなく、比較対象を明確にすることで発見が生まれます。 目的は何か? 次に、分析には明確な目的が必要であるということです。目的がはっきりしていなければ、どの数値を見て何を判断すべきか分からず、結果として行き当たりばったりな分析になってしまいます。 チーム連携はどう? そして、チーム内でのコミュニケーションの重要性です。分析に取り組む際は、目的や比較する基準についてメンバー全員で認識を合わせることが不可欠であると実感しました。 業務の実態は? 私の担当業務は中小企業向けのインサイドセールスの運営です。日々、コール数、コール時間、商談化数、受注数といった指標の管理に努めるとともに、受注商材の傾向やメール配信からの顧客獲得状況なども活用しています。これらのデータを比較する際には、まず各項目の条件が揃っているか、そもそもの目的は何かを確認することを常に意識しています。 成果向上のヒントは? 今後は目的や比較基準の確認を徹底し、チーム全体で正しい分析の考え方を共有して、より成果が出る体制を築いていきたいと考えています。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

戦略思考入門

フレームワークで拓く経営の未来

どう達成感を感じた? 一連のフレームワークの基礎を包括的に学べたことにより、大きな達成感を得ることができました。まず、目標を明確に設定し、現状とのギャップを正確に把握すること。そして、その達成のために複数の選択肢を用意し、吟味した上で最適なものを選び出す考え方が非常に勉強になりました。 外部環境はどう影響する? また、不要な情報を削ぎ落とすことで結果的に顧客の利便性を向上させるという発想が印象に残りました。眼前の顧客だけに固執せず、外部環境の変化も経営判断に取り入れる重要性を再認識することができました。 企業の判断はどう変わる? 従来の経験や勘に頼るのではなく、フレームワークを企業の意思決定の基盤とする必要性を強く感じています。今回学んだ内容を活用し、上場企業の中期経営計画やIR資料、統合報告書などをもとに生成AIによるPEST分析に取り組むことで、より具体的な戦略策定を目指したいと考えています。 AI連携はどう進む? さらに、自社の過去の経営戦略資料を活用し、生成AIと連携することで迅速な意思決定を実現する試みにも挑戦していきます。今後は、マーケティング、バリューチェーン分析、ファイナンスといった分野についてもより深く学び、経営判断力の向上につなげていきたいと思います。

クリティカルシンキング入門

論理的思考が身につくナノ単科の魅力

伝わる文はどう組み立てる? 相手に伝わる文章を書くためには、まず①主語と述語をしっかり書くことが重要です。また、②文章全体を俯瞰して見ることも必要です。そして、③トップダウンで書くことで、論理的でわかりやすい文章が完成します。 ピラミッドは何故有用? 論理的な文章を作成するには、ピラミッドストラクチャーというフレームワークが役立ちます。このフレームワークを利用すると、論理の妥当性を簡単にチェックすることができ、結果として相手に理解されやすい文章になります。 講演会提案はどう判断? たとえば、エリアメンバーや上長に対して講演会の提案をする場面では、予算が必要になることもあります。その際には、主語と述語を明確にして文章を書くことが重要です。そして、ピラミッドストラクチャーを利用して、なぜこの講演会を行うべきなのかを理由付けし、提案書に記載します。 活動計画はどう伝える? また、エリアの活動計画を作成する場面でも同様に、ピラミッドストラクチャーを活用することで、その活動が必要な理由を明確に伝えることができます。 薬剤提案の理由は? さらに、顧客に薬剤をプロモーションする際も、なぜその薬剤を処方いただくべきなのか、メリットを伝える時にピラミッドストラクチャーが役立ちます。

デザイン思考入門

失敗も踏み台に!シンプル開発の現場

プロトタイピングって何? プロトタイピングでは、①目的を明確にする、②適切な要求を抽出する、③適切な時間を投入するという点を学びました。大学の授業は1科目が15回で構成されているため、毎回がプロトタイピングの検証の繰り返しといえます。大幅な修正を毎回行うと、逆に学生の混乱を招く恐れがありますが、これまで以上に学生の反応に敏感になり、改善を重ねられると感じました。 なぜ凝りすぎる? プロトタイプの作成過程では、どうしても機能を増やしたり、完成品に近づけたいという衝動に駆られます。しかし、ユーザーからフィードバックを得るという本来の目的を考えると、あまり凝りすぎないことが大切だと思いました。実際、下手な漫画を用いたところ、その下手さが逆に興味を引き、フィードバックを得る結果となった経験があります。講座で紹介されていたように、本質的な機能に絞り、“Simple is best”の姿勢で臨むことが重要だと感じます。 本音を出す環境は? また、プロトタイプによる検証は、自分のアイデアが外部の批判にさらされるという意味でも、デザイン思考の醍醐味を味わえるプロセスだと思います。ただし、場合によっては意見を控えるユーザーも存在するため、誰もが本音で意見を言える環境作りが必要だと強く感じました。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

データ・アナリティクス入門

振り返りで見つける未来への一歩

学びの方向性は? 学んだことを振り返る中で、今後の方向性を整理できたことが大きな学びとなりました。データ分析に留まらず、組織の問題解決に向けた示唆を提供し、行動結果をデータで検証するPDCAサイクルの推進に貢献する狙いがあります。 分析スキル向上は? そのため、まずはデータ分析スキルを実用レベルに引き上げ、第三者から分析を依頼される水準を目指します。これが、データ収集や提案のための足掛かりとなります。 予測と検証は? さらに、現在仕掛り中のデータ予測の考え方を完成させ、組織内で実践して効果検証を行う予定です。問題解決のステップを実践することで、理解をさらに深める狙いもあります。 プロセス整理は? また、現状の取り組みを踏まえて、問題解決のプロセスを説明資料に落とし込み、ステップごとの流れを整理することが計画されています。これにより、理論と実践の両面での理解が進むと考えています。 実施計画はどう? 具体的なスケジュールとしては、まず9月頃までに過去データを用いた効果検証を行い、データ予測の手法を固めます。その後、検証結果をもとに承認を得た上で、10月以降に実施に移ります。実施前には、どのように効果検証を行い、どの基準で判断するかの基準を明確にしておく予定です。

戦略思考入門

顧客定義で切り拓く差別化チャレンジ

顧客定義はどうする? 差別化や集中などいろいろな施策がある中で、最も重要なのは「顧客」を誰と定義するか、そしてその定義を厳密に行うことだと理解しました。顧客像を明確にすることで、施策の効果が格段に向上すると思います。 環境と戦略はどう? 差別化施策を検討する際には、VRIOをはじめとする各種フレームワークを活用し、自社および周囲の環境を正確に分析することが必要です。そのうえで、リスクを踏まえながらも、複数の戦略を同時に実行できる組織の柔軟さが大切であると感じました。 顧客定義の共有は? 自分の所属するサポートチームにおいても、まず「顧客」が誰であるかを再確認し、その定義から導かれる優位性や差別化要因を自分なりに分析し、同僚と共有するよう努めています。現在のチーム体制も、顧客の定義に基づいて構築されているため、外部環境の変化や何がトリガーになるかについても常に注意を払っています。 多様な意見はどう? また、限られた情報だけに頼らず、少なくとも複数の視点や意見を取り入れることが重要だと実感しています。否定的な意見を受け入れ、フィードバックを正しく取り入れるために、自分自身の感情コントロールを心がけることが、結果としてより良い判断につながると感じました。

アカウンティング入門

ビジネス成功の鍵をつかむナノ単科の学び

企業コンセプトの意義とは? 企業のコンセプトは、その企業の存在理由や目標を示し、一方でPLは、企業の経済活動の結果を示し、利益や損失を表します。企業のコンセプトは、企業がどのような価値を提供し、どのような方向に進むべきかを示すもので、これに沿った経営が行われることで持続可能な成長が期待できます。この結果がPLに反映されるのです。企業のコンセプトに基づいて資源配分が行われ、その配分が効果的であれば、投資した事業からの収益はPLにポジティブな影響を与えます。 自社PLの分析はどう進める? 自社のPLを読み解く際には、自社のコンセプト(企業理念、経営計画)と結びつけて考えることが重要です。これにより、自社の経営状況と経営目標に対する達成状況を把握できます。また、競合他社のPLと自社PLを比較することで、自社の強みや弱みを見つけることができます。 効果的な学習法は? 講義の内容については、予習復習の時間を30分以上設けることが推奨されます。アウトプットとして、自社の損益計算書と中期経営計画を見比べ、気づいた点や疑問点を書き出してください。書き出した点については、自社内でアカウンティングに詳しい社員に聞き取りを行い、アドバイスを求めることで自身の理解度を深めることが重要です。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

データ・アナリティクス入門

プロの視点で分析スキルを業務に活かす方法

フレームワークの重要性を実感 前期の戦略入門でも感じたことだが、まずはフレームワークや型にはめて物事を考えることの重要性を改めて実感した。分析においてはWhat, Where, Why, Howのステップが基本であり、日々の業務においてもこの点を意識して進める必要があると強く感じた。今週の演習を通じて、これまでの経験や感覚に頼っていたことを再認識したので、今後の学習期間中はこの点を意識して取り組んでいきたい。 大幅に下回る結果を改善するには? 現在の業務において、前年以上の売り上げを上げている施設や地域がある一方、前年を大幅に下回る施設や地域も存在する。このような場合において、問題や原因を特定し、その要因を探り、どのように改善に繋げていけるかを追求するために、今週の学びを早速活かしていきたいと考えている。 MECEを使った分析の取り組み 今週の学びの一つであるフレームワークを自分のものにするために、現状の業務に適用してみることにした。週次で分析を進めている特定の地域がなぜ前年を下回る結果となっているのかを題材に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識しながらロジックツリーを活用して分析していきたい。

データ・アナリティクス入門

MECEで分析の精度と効率をUP!

MECEの重要性を再認識 MECE(Mutually Exclusive, Collectively Exhaustive)という概念を知ってはいたものの、長い間実務で意識して使ってこなかった。そのため、What, Where, Why, Howをしっかりと整理しながら進めないと、方向性を見誤る原因となり、結果として漏れが多い分析で無駄に時間を消費することになってしまう。 実務でのMECE活用法 こうしたミスを防ぐには、実務を進める際に常にMECEを頭に浮かべるトレーニングが必要だ。特に仮説を立てる場面が多く、成果が出ない原因になりがちである。特に営業戦略を立てる際には、一般消費者向けのプロモーション内容が的外れになる可能性があるため、プロセスの重要性が極めて高い。 書き出しで得られる効果は? 動画でも言及されていたように、文字として落とし、ビジュアル化することは重要だ。書き出すことで漏れや重複を回避し、整理が進むはずだ。ロジックツリーは何年も使ったことがないが、時間の問題にもなるものの、逆に簡潔化され、スピードが上がるプロセスになるかを試してみたいと思う。また、その過程で「目的は何か」を見失わないようにし、表面的かつ形式的にならない工夫を取り入れたいと考えている。

「結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right