クリティカルシンキング入門

問いを見失わないための学びのコツ

イシューを特定する重要性とは? 「イシューを特定する」ことの重要性を改めて学びました。何かを始める時、すぐに考え始めてしまうクセがあるため、そこに偏りがあると再認識しました。そのため、課題に取り組む際はまず問いを立て、それを周囲と共有し、問いを押さえ続けることを毎回意識したいと思います。 学びを定着させる方法は? この講座で学びを定着させるためには、反復トレーニングが重要であることも再確認しました。6週間でどこまで学びを自分のものにできたか不安でしたが、話を聞いて、反復トレーニングを重ねることで学びを自分の業務に落とし込み、何度も実践していくことが重要だと感じました。 問いを共有する実践方法 例えば、会議では毎回その会議で話し合うべき課題(問い)を参加者と共有するようにし、課題解決や業務効率化では、その解決が何のために必要か、最初に問いを設定し、それを見失わないようにします。カウンセリングでは、学生が悩んでいる点や求めているものを意識し、その問いに対する答えに誘導していく話の進め方を心掛けます。パワーポイント作成では、各スライドで伝えたいことを最初に意識してから作成に取り掛かるようにします。 問いを立てることが不可欠? これらの事例に共通して言えるのは、まず問いを立てるということです。思いついたことから始めるのではなく、その取り組む事項の最終的な目的を意識するようにします。そして、それを周囲と共有し、論点がずれそうになったら目的を何度も確認することが大切です。 学んだことを実践に移すには? ライブ授業の中で話があったように、講座での学びを自分のものにするためには一旦仕事のスピードが落ちることを認識し、面倒くさがらずにまずは学びを実践してみることが重要です。そのために、業務に落とし込めそうなことを改めてまとめ、業務中に目につくところにメモを置いておくようにします。

データ・アナリティクス入門

フレームワークで拓く学びの未来

3Cと4Pで何を探る? フレームワークの各視点を用いて仮説の可能性を広く検討することは非常に重要です。3C分析では、市場・顧客、競合、自社の観点から、誰が顧客であるか、市場の伸縮、競合の存在やその強さ、自社がどのようなサービスを提供し顧客のニーズを満たしているかを考察します。同様に、4P分析では製品、価格、場所、プロモーションの各要素に注目し、製品やサービスの質、価格設定、提供方法、そして効果的な販促方法について検討します。 戦略はどう立てる? フレームワークを用いて仮説を幅広く検討する姿勢は良好であり、各視点で具体的な議論に進めば理解がより深まります。例えば、3C分析から得られた仮説を基に具体的な戦略をどのように立案するか、4Pの各要素がどのように互いに影響しあっているかを考えることが課題となります。 事例分析は効果ある? ビジネスケースに実際にフレームワークを適用し、その有効性を確認することもおすすめです。引き続き学習を進めながら、現実の事例に即した検討をしてみてください。 医療M&Aの今後は? また、医療系M&A市場については、中小規模医療機関の承継ニーズの増大や医療費抑制政策の影響により、今後も活発な動きが予測されます。一方、競争の激化や規制リスクも存在するため、専門性の向上、デジタルトランスフォーメーションの推進、さらには事業領域の拡大が求められます。 AI・DXでどう変える? 具体的には、3C分析から得られた仮説をさらに充実させ、週次のミーティングで戦略の検討を行うことが考えられます。また、4Pの観点からAIを活用した企業価値評価による業務の効率化や情報発信の強化も有効です。加えて、DXの活用によるマッチング効率の向上、事業領域拡大に向けた人材育成と確保、さらには医療費抑制政策や規制強化への迅速で正確な情報収集の自動化も検討すべき課題と言えます。

クリティカルシンキング入門

イシューを見直す!効率UP体験談

本当に捉えていますか? イシューを正しく捉えることの重要性について、今回の動画学習を通じて改めて実感しました。実際の業務においてイシューが捉えられていない、または一貫して考えられていないことがあり、これが大きな問題となる場合があります。課題をきちんと理解せず進めると、打ち手を考える段階で根本的な課題が異なることに気付くこともあります。そのため、イシューを正確に捉えることに徹底的に労力を費やし、何かを進める前にそのイシューを共有して同意を得ることの重要性を強く感じました。 自分を客観視していますか? 動画学習の事例を見たときには、他者の過ちに気付くことができましたが、実際の仕事では自分のことは見失いがちです。したがって、常に自分自身を客観的に見て、イシューが正しく捉えられているかどうか継続的に確認することが大切だと考えています。 合意は十分ですか? 私の実務経験でも、企画を考え、上長や同僚に説明して合意を得るプロセスにおいて、イシューが適切でない状態で進めてしまい、再び見直す必要が生じることがありました。これにより手戻りが増え、業務時間が長くなっていました。今回学んだイシューを捉える手法を活用することで、手戻りが少なくなり、効率的に業務が進むのではないかと考えています。 上長に確認していますか? 特に、上長が捉えているイシューを的確に理解し、何をすべきか検討しながら資料化することが大切だと感じました。資料化する前にイシューの特定が正しいか確認するために、上長に確認を取るべきだと考えています。このプロセスをしっかり行えば、手戻りの工数が減り、目標としている残業時間の削減に貢献できるでしょう。 復帰後どう活かす? 来週育児休暇から復帰する予定ですが、今回学んだクリティカルシンキングのスキルをすぐに活用し、自分自身の中で自然に使えるようにしていきたいと思っています。

クリティカルシンキング入門

クリティカルシンキングで見える新たな視点

どうして思考法を学ぶ? クリティカルシンキングについて学んだ際に、印象的だったのは「問題の本質を見極める力」と「適切な問いを立てる重要性」です。これらを意識して、他者にもわかりやすく伝えることを心がけています。 本当の問題は何? まず、「問題の本質を見極める力」についてです。表面的な問題に流されず、本当に解決すべき課題を特定することの重要性を学びました。例えば、MRI検査の予約が遅れる問題では、「なぜ遅延が発生しているのか?」や「業務フローのボトルネックはどこか?」と探ることで、真の原因を明らかにできます。この力を身につけることで、根本的な解決策を見つけるアプローチが可能になります。 問いの意義は何? 次に、「適切な問いを立てる重要性」です。クリティカルシンキングでは、「問い」が思考の出発点となります。これにより、課題が明確化し、解決への道筋が見えてきます。例えば、患者さんに負担の少ない検査を行うためには、「どうすれば患者さんが安心して検査を受けられるか?」といった問いが必要です。適切な問いを立てることで、自分の考えを整理し、意見を共有しやすくなります。 共感と論理はどうなる? 最後に、「共感力と論理的思考のバランス」も重要です。クリティカルシンキングは、論理だけでなく、相手の気持ちにも寄り添う共感力と組み合わせて初めて力を発揮します。特に医療現場では、患者さんの不安に寄り添いながら、根拠に基づいて最適な判断を行うことが求められます。 学びの成果は? このように、クリティカルシンキングを学ぶことで、表面的な問題に惑わされず、根本的な解決を目指す視点を持つことができました。「適切な問いを立てること」と「共感と論理のバランスをとること」が、最適な医療提供につながると感じています。この考え方を日々の業務に取り入れ、医療現場での課題解決に貢献していきたいと思います。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

戦略思考入門

賢い選択で効率化を目指す!

捨てる理由は何だろう? 今回のWEEKで学んだことは、「捨てる」という行為の重要性でした。特に、目的と数値的根拠(特に利益)を持って選別することが重要だと感じました。WEEKを通して感じたのは、物事の整理・分析をし、大局的な視点で差別化した戦略を立てることで、目的をもって選択(捨てる)するサイクルが大切だということです。 効果をどう見極める? ビジネスでは、投資対効果の高いものだけを選び続けるのが理想です。しかし、最初からすべて効果の高いものを作り出すのは難しいと実感しています。限られたリソースの中で新しい施策を試しながら、投資対効果の低いものを捨て、高いものを残すというサイクルを繰り返すべきだと明確になりました。何を目的に捨てるのかをしっかり考え、一度選択したことでも目的をもってやめることが重要だと感じました。 選別基準は何だろう? WEEK内の課題では、実際に企業へのアプローチ方法を考える設問を通じて、何を基準に取捨選択するかを理解しました。これまでは漠然とした時間や工数で判断していましたが、利益率で優先順位を判断することが重要だと学びました. 集約のポイントは? 仕事の集約に際しては、効率性の高い内容を優先的に集約していきたいと思います。また、実行して非効率だと判断した場合は、捨てる選択をする勇気を持つことも心掛けます。さらに、多回数の会議や定例業務を見直し、品質を上げたい業務に集中できるように整えたいと考えています. 効率向上の戦略は? まずは目の前の問題に取り組み、課題解決に活かしていきたいです。高品質化と効率化を実現するため、現時点での課題であるリソース不足に対処します。費用対効果の悪い業務を洗い出し、捨てるかどうかをリストアップし、その上で新たに生み出したリソースをどの業務に集中させるかを選択していきたいと思います.

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

リーダーシップ・キャリアビジョン入門

経験が織る未来への道しるべ

リーダーの目標は何? リーダーや上司が自分のキャリアにおいて明確な目標を持っていると、人は自然とその姿勢に引かれるという考えに大いに共感しました。また、キャリア形成は決して一直線ではなく、さまざまな経験や試練を経て形作られていくものだという「キャリアサバイバル」の考え方も納得できるものでした。この学びを通じて、自分自身のキャリアについて再考し、今後の方向性をより具体的に描いていこうという意識が強まりました。 演習で何を感じた? 総合演習では、これまでに学んだ内容の中で忘れていた項目を思い出すことができ、知識の整理に役立ちました。演習を進める中で、キャリアは紆余曲折を経ながらも形成されていくと実感し、そのことを部下や後輩に伝えていきたいと思いました。実際、かつての上司からは、最初から今のポジションを目指していたわけではなく、経験を積み重ねた結果として現状に辿り着いたという話を聞いており、その事実が自分自身の考え方にも影響を与えています。 大切な価値観は何? 私自身は現時点で具体的なキャリアゴールを持っているわけではなく、漠然とした目標を意識している程度ですが、今回の演習を通じて、自分の大事にしている価値観を確認することができました。この価値観は、社会人になってから大きく変わっていないと実感しており、今後のキャリア形成の基盤として活かしていきたいと考えています。やるべきことや求められる役割が変化していく中で、自分の強みや信念をしっかりと見極め、その上で最終的なキャリアの形を描いていくことが今の課題だと思いました。 キャリアアンカーの割合は? また、部下を持たれている方の中で、明確なキャリアアンカーを持っている割合がどの程度なのかについても非常に興味があります。今後の学びを通して、より具体的な状況や事例について知り、自分の考えをさらに深めていければと思います。

リーダーシップ・キャリアビジョン入門

振り返りが導く新たな自分

振り返りの大切さは? 今回の学びでは、実際の経験をもとに成長を促す方法やモチベーションの維持・向上について理解を深めることができました。経験から学ぶプロセスでは、まず振り返りを習慣化することが重要であると実感しました。実際に取り組んだタスクを振り返ることで、目指すべき姿とのギャップを確認し、メンバー自身が課題を認識する土台を整えることができるためです。事実に基づいた評価や、明確な基準に沿った成功事例と改善点の双方を伝えるアプローチが、より実践的な学びにつながると思います。 仕事任せは効果的? また、メンバーに仕事を任せる際には、執行責任を持たせリーダーによる干渉を最小限に抑えることで、成長の機会を十分に提供できると感じました。不測の事態への迅速な対応と、組織全体での改善策の検討も重要なポイントです。こうした経験を通して、メンバーが自らの力で気づきを得て、主体的な行動へとつなげる環境作りの大切さを学びました。 モチベーションの鍵は? さらに、モチベーションに関しては、働く理由と働く環境の両面から考えることが必要だと実感しました。金銭的報酬や社会的評価、自己実現の場の提供など、多角的な視点が組み合わさることで、より一人ひとりに適した動機づけが可能になります。理論として取り上げられる各モデルを参考にしながら、相手を尊重し、適正な目標設定や信頼関係の構築を継続的に行うことの重要性を再確認しました。 タスク運用の実感は? 実際のタスク運用では、まずタスクの背景、目的、期限、サポート範囲を明確にし、初めての経験を積む機会として具体的な行動を促すステップを実践しました。タスクの進行状況を確認しながら、適宜振り返りの機会を設け、メンバーが自らの言葉で気づきを表現できるよう導いた結果、若手社員が一人称で考え、主体的な学びを得るプロセスがよりスムーズに進むと感じています。

データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

「課題 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right