クリティカルシンキング入門

問題の本質を見抜く力を磨く旅

問題の本質は何? 私は「イシューを特定する」ことの重要性について学びました。この最初のステップがその後の検討に大きく影響することを実感しました。問題の本質を正確に把握することで、より効果的な解決策を導き出せるということです。過去の自分を振り返ると、事実を十分に整理せずに進めていたことが多かったことを反省しています。今後は、まずイシューを特定し、整理した上でしっかりと検討を進めていきたいと思います。 活用可能な場面は? この「イシューの特定と整理」という手法は、私が担当している人事・勤労関係の業務においても多くの場面で活用可能です。従業員からの相談対応では、表面的な訴えだけでなく、根本的な課題を的確に特定することで、適切なサポートができるでしょう。また、新しい人事制度を設計する際には、「なぜその制度が必要なのか」という本質的な課題を明確にすることで、より効果的な施策を立案できると考えています。 本当に求める人材は? 現在進めている採用計画の策定においても、各部門の管理職との面談時に、単なる要件確認にとどまらず、「なぜその人材が必要なのか」「どんな課題を解決したいのか」という点を重視して確認しています。これらの実践を通じて、イシューの特定・整理のスキルを日々の業務の中で磨いていきたいと考えています。

クリティカルシンキング入門

本質的な問いと解決策を見つける方法

問いの立て方で何が変わる? 問いの立て方次第で解決の方向性が変わることを学びました。本質的な問いとそれを解決するための具体的な策についての流れを確認できました。 まず、やみくもに考え始めるのではなく、以下の手順を取ることが重要です: - 問いから始め、問いの形に表現する - 具体的に考える - それを一貫して押さえ続け、イシューを意識し続ける - 周りに共有して方向性を合わせる これらの必要性を確認しました。 イシュー設定が議論を引き締める チームのミーティングでは、イシューを適切に設定せずに話し始めることが多くありました。まずは自分がイシューを設定し、それをメンバーに共有することで、話すべき内容の方向性を合わせた上で議論を進める必要があります。本筋から逸れそうなときは、再度イシューを意識し、話を戻すようにファシリテートすることが重要です。 本質を押さえる方法とは? まずは本質的なイシューが何なのか、様々なケースを確認して勘所を押さえることが大切です。そして、イシューに対する解決策をロジックツリーの形に落とし込むように意識します。頭の中で考えるだけでなく、手を動かして具体化することが求められます。また、チームメンバーにイシュー設定の重要性について話せるようにするために、自分自身が理解を深めていきます。

データ・アナリティクス入門

平均値の裏側に潜む本当のデータを読み解く

平均値の理解とは何か? データ分析において、平均値という言葉に惑わされ、その中身を詳しく見ることを怠りがちだったことに気づかされました。改めて、目的を無視した代表値の活用が良い分析結果につながらないと感じました。平均値にも加重平均や幾何平均など様々な種類があり、それらの算出方法を学べたのはとても良かったです。 代表値への新たな挑戦 現在、自分が理解したつもりでいる部分が多いと考えています。今後は、他の練習問題にも挑戦し、世の中に溢れている代表値がどのように算出されているのかを更に考えられるように努めたいです。 分析結果をどう伝えるか? データを分析し加工することによって、相手に何を伝えたいのかを明確にし、グラフや代表値の算出を行いたいと思いました。また、公的データでも分かりやすい平均値だけを提示して受け取り手の印象に強く残す手法がありますが、代表値の裏側にあるデータの分布を調査した上で、そのデータから何が言えるのかをしっかり考えたいと思います。 データ加工で心掛けること 以下の点を心がけます: - 加工データの裏側を考える癖をつける - 自分でデータを加工し、伝えたいことが伝わるようにする - データ加工の前に必ず要件定義を行う - 様々な平均値の算出方法について、仕組みや成り立ちを理解する

データ・アナリティクス入門

マーケットの広がりを感じる分析の魅力

データ比較で新たな発見をどうする? 他のデータと比較することで、新たな洞察を見出すことが重要です。分析のプロセスとしては、まず目的を明確にし、次に問いに対する仮説を立て、その後データを収集し、最終的に分析によって仮説(ストーリー)を検証します。 どの分析視点が有効か? 分析における視点としては、インパクト、ギャップ、トレンド、ばらつき、パターンを見ることが大切です。具体的なアプローチとして、代表値(単純平均、加重平均、幾何平均、中央値)やばらつき(標準偏差)を使うことで、データの特徴を理解します。 仮説検証で気づく新たな問題は? 提案する際に、自分の仮説を立証するためのツールとして、これらの手法を使いたいです。仮説には正解がないことから、むしろ仮説が間違っている場合は、実際の状況とのギャップに気づきやすくなり、新たな問題発見につながります。ですので、間違った仮説を立てることも恐れず、仮説の幅を広げたいと思います。 勘と経験を超えて新たな仮説を 長年、勘と経験で仮説を立てていましたが、自分の思考範囲を超えた仮説を立てることで、マーケットの状況を広く知り、新たな問題点に気づけるようになります。また、いろいろなグラフを作成し、自分の仮説に対して一番説得力があるものを比較してみたいと考えています。

クリティカルシンキング入門

多角的な視点で本質を探る思考法

フレームワークは有効? 5W1Hといったフレームワークを活用することで、モレやダブりを防ぎながら、迅速に考えをまとめることができると感じています。また、物事を複数の切り口から分解してみると、表面的には見えなかった本質が見えてくることがあります。一度や二度の分解で結論を出すのではなく、「本当にそうか?」と批判的思考を持ちつつ、別の視点を探ることを心がけたいと思います。 具体例はどう分析? 具体的な活用例としては、アンケート集計結果の分析があります。例えば、性別や年代別、地域別に分解し、さらにクロス集計することで、表面上では分からなかったデータの特徴を発見する可能性があります。また、企業審査における決算書分析でも有用です。売上の増減要因を確認する際に変数分解を行い、事業者の申出内容との整合性を判断することができます。もし整合性がない場合は、事業者が気づいていない点を指摘し、経営アドバイスを行うことができるでしょう。 どう切り口を見出す? 私の役割として、部下が行うアンケート集計の分析結果をレビューする立場にあるため、「別の切り口はないか」という視点を大切にしています。また、別の切り口を見つけた場合、そのことを指摘するだけでなく、分解の必要性やその切り口を採用した理由もきちんと伝えるように心がけています。

戦略思考入門

フレームワークで広がる戦略の視点

戦略構築で見落としは? 戦略を構築する際に、フレームワークを活用することで見落としを減らせると感じています。代表的なフレームワークとして、3C分析、SWOT分析、バリューチェーン分析などがあります。分析が終わった後は、「整合」を重視して戦略を立てることが重要です。全社的に考えることが求められ、一部門のみで整合がとれているだけでは必ずしも良い戦略とは言えないことがあります。また、短期的に成果を上げても、中期的には見直しが必要な場合もあるため、短期的施策として実施期間を設定したり、見直しの指標を設けたりすることが大切です。 会社状況をどう整理? これまで、自分で会社全体の状況を整理する機会がなかったため、まずは3CとSWOT分析から始めてみたいと考えています。その際、各部門ごとに発表される戦略や目標に関する資料を活用し、それを元に自分なりに1つの資料としてまとめて分析します。この全体像の中から、自分のチームとして何ができるかを考える予定です。 チーム貢献、どう考える? 会社全体および各部門の戦略を分析し、自分のチームがどのように貢献できるかを考えています。再来週には社員全体で今期の中間報告会が予定されているため、それまでに分析を完了し、チームとして事業に貢献できる部分を明確にしたいと考えています。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

データ・アナリティクス入門

論理で見つける本質のヒント

ロジックとMECEの意義は? 今回、ロジックツリーとMECEの考え方の重要性を学びました。実際の業務ではロジックツリーを使用していますが、MECEについては十分に意識できておらず、その結果、抜け漏れや重複が生じることがありました。今後は生成AIを活用し、漏れやダブりがないかを確認していきたいと考えています。 問い合わせ対応の真意は? また、ユーザーからの問い合わせに対しては、単に表面的な対応にとどまらず、ユーザーが抱えている本質的な問題をしっかりと把握することの大切さを再認識しました。たとえば、ユーザーから「椅子が壊れたから直してほしい」と依頼があった場合、単に椅子を修理するだけでなく、一体何に困っているのか(What)、どの部分が壊れているのか(Where)、なぜ壊れてしまったのか(Why)、そして今後の対策(How)についても考え、包括的に対応することが求められます。 本質追求はどうする? さらに、ロジックツリーを活用して、ユーザーが本当に必要としていることをWhatの視点で明確に考え、抜け漏れがないかを網羅的に確認する視点を持つことが重要だと感じました。思考の順序は、最初にWhat、次にWhere、そしてWhyの順に進めることを意識し、具体的かつ論理的な対応を心がけたいと思います。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

クリティカルシンキング入門

データ分析で見える新たな発見と改善法

データをどう視覚化する? データを分析する際には、今ある数字に一手間かけることが重要です。ただ数字を並べるだけでなく、グラフや表に変換すると新しい発見が生まれます。また、比率に変換することで別の角度からデータを見ることができ、さらなる洞察が得られます。 分解の基準は何が有効? データを分解する際には、人、時間、手段などの基準で区切ると分かりやすくなります。例えば、月次や年次の売上分析、SNSのインサイト分析など、数字が明確に示されるものだけでなく、業務の効率化や成果が出なかった場合の原因分析にも役立ちます。 問題の特定と解決策のステップ まず、起きた問題に対して「もれなくダブりなく」を意識し、全体を大きく分けて定義します。その際には、層別分解、因数分解、プロセス分解を用いることが有効です。次に、出てきた項目をさらに分解し、どこが問題点なのかを数字や表で明確にします。そうすることで、問題の箇所を特定しやすくなります。問題が特定できたら、なぜそうなっているのかを考えます。そして、どう解決すれば良いのかを分析から導き出し、仮説を立ててトライアンドエラーを繰り返し、最適な解決策を見つけます。 これらの手法を念頭に置くことで、データ分析がより効果的になり、業務の改善や効率化にもつながると感じました。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

リーダーシップ・キャリアビジョン入門

フィードバックで成長を促すコツ

フィードバックの心得は? フィードバックを行う際には、慎重な心構えが求められます。特に評価が低い場合には、納得感を持ってもらうことが重要です。フィードバックを受けた相手のモチベーションを維持し、未来に向けた前向きな気持ちを引き出すためには、相手の心情に配慮した言葉選びと表情が大切です。また、具体的な事実や数字を提示することで、現在の達成度を明確にし、納得感を高めます。 低評価はどう伝える? 低評価を伝える際には、批判するのではなく、成長を促すスタンスを心掛けましょう。フィードバック後には、受け手が今後取り組むべきことを明確に理解し、前向きな気持ちで面談を終えられるよう目指すことが重要です。自己評価と異なる意見を伝える際も、アプローチ次第で結果を大きく変えることができると信じて、メンバーと向き合いましょう。 年上部下への伝え方は? 経験豊富な年上の部下を持つ場合には、大きなハレーションを避けるため、アプローチに一層注意を払う必要があります。しかし、リーダーとしての役割を果たし、組織や顧客のために必要なことは率直に伝えることも求められます。相手へのリスペクトを忘れず、組織の発展に貢献するために何をすべきか、しっかりと考えを持ちながら部下とのコミュニケーションや1on1面談に臨みたいと考えています。

「表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right