データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

仮説で輝く成長ストーリー

仮説ってどう捉える? 今回の学習を通じて、仮説の意味や分類、そしてその意義について理解が深まりました。仮説とは、ある論点に対する仮の答えであり、主に二つの分類に分けられると知りました。一つは、論点に対する仮の答えを示す「結論の仮説」、そしてもう一つは、具体的な問題の解決を推進するための「問題解決の仮説」です。 仮説意義はどう? また、仮説を考えることの意義として、検証マインドの向上やそれに伴う説得力の強化、関心や問題意識の向上、スピードアップ、行動の精度向上が挙げられることを学びました。これまでこれらのポイントを特に意識することはなかったものの、今後はこれらを意識しながら仮説を活用していくことが大切だと感じました。 印象は何が響く? 特に印象に残ったのは、「仮説を考えることの意義」についての内容です。日々の業務において、検証マインドの向上、問題意識の深化、スピードアップ、そして行動の精度向上を意識して対応することで、より効果的な問題解決が図れると確信しました。

データ・アナリティクス入門

キャンペーンを成功に導く効果検証術

キャンペーン効果をどう活かす? キャンペーンの効果検証に生かすことができると思います。これまで効果検証を次の施策や会社の計画に反映できていないことが課題でしたが、キャンペーンの結果を本講座の分析法で分析し、そこから見えてくる考察を基に新しい取り組みを提示したいと思います。 商品性の比較はなぜ必要? また、現在部署で新規事業の検討を行っております。その商品性の検討に際して、他社商品を比較することが必要です。分析を行うことで、商品性に取り込みたい要素や難しい要素を明らかにすることができると思います。 課題解決に向けた具体策は? これらの課題に対し、次のことを行っていきたいです。 - WEEK1で学んだ内容の共有 - 分析対象となるものの選定 - 比較対象のピックアップ WEEK1で学んだことは既にチームメンバーに共有しており、メンバー全員が納得した内容でしたので、今後も新たな気づきを共有し、実践の場で活用していきたいと思います。

データ・アナリティクス入門

数字が語る!ストーリー分析

各要素はどう繋がる? 今週は、分析にはストーリーがあるという重要な視点を学びました。What、Where、Why、Howという各要素を明確に把握し、各段階のアクションが前の段階とどのようにつながっているかを振り返ることで、無駄のない論理的なアプローチが可能になることを実感しました。 数字の意味はどうなる? また、分析の前提として数字と率の両面から取り組むことの大切さを認識しました。これにより、現時点で顕在化している問題が自部門にとって大きな課題なのか、あるいは今回は重要な対策の対象ではないのかを判断できるため、効果的な意思決定の材料となります。 自分の考えは正しい? 今後は、自分でテーマを設定し、日々の業務データに基づいた分析や検証を積み重ねていきたいと思います。報告資料には自分の考えや仮説を取り入れ、チーム内で説得力のある説明を行うことで、今後の活動に役立つ具体的な提案を実施し、都度見直しながら継続的な改善を図っていきます。

戦略思考入門

効率化で時間と売上を生み出す秘訣

経営戦略で何が変わったのか? 現在の会社では、経営戦略の活用により無駄な作業が著しく減ったと感じます。以前は同じ内容を複数の書類に記載するなどの二度手間が多かったですが、今は減らせる作業をどんどん減らしていっています。それにより、顧客への準備時間が確保でき、売上にもつながっています。 仕組み化のメリットとは? 仕組化することも有効だと考えます。例えば、講演会の開催においては、個人によって準備や開催の方法、フォローの取組が様々ですが、最も効率的な方法をチームで検討して仕組化することで、抜け漏れの確認が容易になります。そして、全員が最も効率的な方法を実行できるようになるメリットがあります。 どう仕組み化を進める? この仕組み化を実際に試してみようと思います。まずは、チームの個々の講演会のやり方を聴取し、最短で効果的な方法を抽出します。その後、数人で実施し、検証しながらブラッシュアップしていくことで、最終的に仕組化したいと考えています。

データ・アナリティクス入門

A/Bテストで見える戦略のヒント

どうして問題が起こる? 問題の原因を探るためのアプローチについて学び、これまでの仮説中心の手法から一歩踏み込んだ問題解決の方法を理解できました。 A/Bテストで何がわかる? 中でも、A/Bテストを用いて施策の効果を比較し、仮説検証を繰り返すことの重要性を学びました。条件をできるだけ揃えて比較することで、より正確な評価ができる点に納得しました。 販売戦略にどう影響? 実際、あるスーパーマーケットの販売戦略を考える際にも、A/Bテストの手法は有用だと感じています。どの商品がより売れるのか、また企画がどの程度影響を与えるのか、複数の案を出して検証することは、戦略構築に大いに役立つと思います。 工数と時間の見直しは? ただし、A/Bテストを実施する際の工数と時間の按分については、今後さらに検討が必要だと感じました。これらの点を踏まえ、実際の業務にどのように活かすかを考えるうえで、引き続き学びを深めたいと思います。

デザイン思考入門

本当に必要な一手に気づく

顧客認識はどう? 日々の業務や部門単位の営業戦略、さらには会社全体の経営判断という異なる判断範囲の中で、共通して大切なのは、誰を顧客とし、どの商品を通じて価値を提供するかという認識を社員全員で共有することだと学びました。 プロセスの見直しは? この気づきにより、単に作業として形骸化していたプロセスであっても、本当に必要なものかどうかを検証することが可能になりました。すべての判断には目的や背景の理解が不可欠であり、それを明確にしなければ、数ある情報の中から適切な選択をすることは難しいと感じています。また、作業の目的や期待される効果、全体の流れを伝える重要性も強く実感しました。 理解の違いはどう? さらに、同じ情報を見た場合でも、受け取り方や理解度は人それぞれです。社員全員が一定以上の理解と成果を発揮できる状態を目指すためには、どの部分が思考や行動のボトルネックになっているのかをしっかりと検証することが必要だと考えています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

データ・アナリティクス入門

みんなで検証!次の一手へ

一方的打ち手はどう? ABテストの学習を通じ、これまで仮説に基づいて一方的に打ち手を実施してきた方法では不十分であると痛感しました。打ち手をただ試すだけでなく、条件を統一して比較することの重要性を実感し、現行の業務プロセスに問題があると感じるようになりました。 複数打ち手の検証は? また、課題に対しては通常一つの打ち手で対応しており、忙しさの中で次々と新たな打ち手を試す状態になっていました。今後は複数の打ち手を検討し、ABテストの考え方を取り入れたうえで、同一条件下でどちらが効果的かを慎重に比較・検証していきたいと考えています。 多角的視点の探求は? さらに、毎週の採用状況確認のミーティングでは、複数の打ち手を提案することで、先週までの分析手法も組み合わせながら多角的な視点から糸口を探っていく予定です。これを足掛かりに、次のステップに進むための具体的なアクションを模索し、ABテストの実施と継続的な検証を行っていくつもりです。

クリティカルシンキング入門

数字を超えた視点の冒険

数字の見方は本当か? 数字をただ見るのではなく、視覚化やグラフ化することで、より多角的な意味を見出すことができると実感しました。また、MECEの基本的な考え方についても理解が深まり、モレやダブりを意識することの重要性を学びました。「本当にそうか?」と問いかけるプロセスが、短絡的な結論を避ける上で大切だと考えます。 疾患領域はどう選ぶ? 新規薬剤や新たな事業領域の開発を考える際、まずは対象となる疾患領域を絞り込む必要があります。さらに、その絞り込んだ後のポピュレーションや、疾患の重篤度、患者数、事業性、競合環境など、さまざまな切り口からニーズの有無を検証することが求められます。 課題分解は的確か? また、課題をどのように分解し、分解が適切に行われているかを意識することも重要です。一人で考え込むのではなく、メンバー間で様々な視点を共有し、切り口のアイデアやモレ・ダブりの有無を話し合いながら進めていくことが効果的だと感じました。

データ・アナリティクス入門

3C×4Pで解く故障改善の秘密

複数視点って何が肝心? 修理データの分析では、仮説構築の際に一面的な見方にとらわれず、複数の視点から網羅的に考えることが不可欠です。今回学んだ3C(顧客・自社・競合)や4P(製品・価格・流通・販促)のフレームワークを活用することで、故障原因や改善のポイントを多角的に把握できるようになりました。 故障原因はどう見える? たとえば、顧客視点では使用環境や年齢層による故障傾向が考えられる一方、自社視点では特定の機種や部品の設計上の課題に着目できます。また、競合視点では他社製品との比較による違いを仮説にすることも可能です。さらに、製品ごとの故障率や価格帯、販売地域ごとの傾向にも注目し、それらを関連付けながら仮説を検証していくことが求められます。 課題解決の鍵は何? このように、フレームワークを効果的に活用しながら問題解決に取り組むことで、修理データに潜む課題をより具体的かつ明確に把握することができるようになりました。

クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

「検証 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right