データ・アナリティクス入門

問題解決を極める!広告業での実践ノウハウ

プロセス分解が鍵となる? 原因の探求について学びました。特に、問題の原因を探る方法としてプロセス分解が有効であることを知りました。問題の箇所を絞るためには、プロセスを詳しく分析し、仮説を立て、その仮説を検証することが重要です。このプロセスには、文データ分析や仮説の検証などのステップが含まれます。 広告の効果検証とは? 広告業に携わる私にとって、こうした方法論は日常的に行っていることですが、改めて体系的に学ぶことの意義を感じました。特に、広告の効果検証においてはPDCAサイクルを用い、データ分析を通じて仮説を立て、その仮説を検証するプロセスが連続的に行われます。この週に学んだ内容は、日々の業務におけるステップのヌケモレの確認に活用していきたいと思います。 仮説の重要性を再確認? データに触れることを日常的に行い、データを一度集めただけで満足せず、常に仮説をブラッシュアップし続けることが必要です。同時に、データを継続的に収集し、これらを繰り返し行うことで課題解決ソリューションに繋げることができます。また、A/Bテストも広告業務で実施しており、学んだ内容を実践に活かしていくつもりです。

クリティカルシンキング入門

問いを極める!課題解決の一歩

問題点は正しく見えてる? 課題解決を考える際は、まず問題点が何かを洗い出し、さらにその問題点が本当に正しいのか見つめ直すことが大切であると感じました。また、定めた問題点を皆で確認しながら議論を進めることで、的確な議論が実現できると学びました。 会議の議題は整理済? 会議では、始める前にイシューを明確にすることで、話がぶれることを防げると実感しました。 企画立案の仮説は? 新商品企画を立案する際には、アンケートを実施して回答を集計する前に、課題の仮説を立てやすくするために問題点を整理しておくことが重要だと考えました。回答を集めるだけでなく、課題の検証としてアンケートを活用することで、現状の課題や商品の課題を整理しながら進めると、途中でコンセプトがぶれにくくなることを学びました。 問いは効果的? 普段から「問い」に意識を向け、直感で問題を捉えるのではなく、問題点が本当に正しいのかいろいろな方向から考えることが求められます。捉えた問題点を相手に的確に伝えるために、話を整理して伝えることや、課題を共有しながら確認して進める姿勢が、より効果的な議論や企画につながると感じました。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

戦略思考入門

業務の効率化は「やらないこと」で決まる

優先順位付けの重要性とは? リソースは有限であり、戦略的に物事を進めるためには優先順位をつけることが重要であると理解しました。何をやり、何を捨てるのかを決めるには、判断基準を設ける必要があります。特に、投資対効果を算出することが一つのポイントです。根拠のある判断基準があれば、後ろ向きな印象のある「やらない/捨てる」という決断も納得感を持って周囲に説明できるとわかりました。 実証実験での課題は? 現在の業務において、「何をやらないか」を決められないことが大きな課題だと感じています。特に実証実験を始める際、規模や検証すべき内容(今回は何を検証しないのか)を明確にすることが、有限なリソースを効率的に活用し、仮説検証の精度を高めるために役立ちます。 効果的な仮説検証の進め方 これからは、各フィールドで進める実証実験の目的を明確にし、検証すべき仮説を見直していきます。チームで検証すべき仮説を洗い出し、どの仮説を優先して検証するかをグループ会議で議論します。また、担当フィールドで想定している開発機能も、その優先順位に基づいて絞り込んでいく予定です。

クリティカルシンキング入門

多角的視点を磨くデータ探求の旅

切り口の偏りは? せっかくデータを作成しても、切り口が偏ると適切な分析ができない場合があります。そのため、まずは多くの切り口で検証し、仮に失敗しても恐れずに試みることが重要です。 視覚資料の活用は? また、グラフなどの視覚資料を効果的に活用するとともに、全体の区切りや範囲に注意を払い、ダブりや漏れがないように全体像を俯瞰しながら、目的に沿って細かく分解する工夫が求められます。 目的と創意工夫は? 目的を見失わずに、データを創意工夫して見せる姿勢も大切です。MECE(漏れなく、ダブりなく)を意識し、複数の切り口から分析を行い、その結果を分かりやすく伝えることを心掛けましょう。職場の意見を反映する際も、偏った分析にならないよう真の原因を追求することが必要です。 アンケートの目的は? 今後、職場環境の改善を進めるためにアンケートを実施する際は、まず目的を明確にし、事務局の方向性と従業員の意見のギャップを把握することが基本となります。さまざまな視点から課題を検証し、その分析結果を分かりやすく報告する工夫を重ねていきたいと考えています。

クリティカルシンキング入門

ナノ単科で描く未来への学び

意味ある問いは何? 分析を進める際は、適当な手法に頼るのではなく、まず意味のある問いを立てることが大切です。その問いに対して、イシューを明確にし、論理的な枠組みの中で回答を導くことが求められます。また、思考の偏りを排除するためには、フレームワークを活用し、他者との反復練習を重ねることが有効です。 効果検証はどうする? 一方で、制作物の効果検証においては、最初に問いを設定し、その問いに基づいて分析を行うことが基本です。これにより、クライアントの課題を解決するための講義の再設計や、講義の集客向上に向けた具体的な提案を行い、成約の精度をより高いものにすることが可能となります。 講義資料は再検討? さらに、講義資料に関しては、顧客の反応が芳しくない箇所を的確に洗い出し、批判的な視点から見直すことが必要です。これまで経験や感覚で作成していた部分は、一度解体し、フレームワークを用いて再度根拠を明確にする方法が有効です。可能であれば、他者との対話を通じて率直な意見を取り入れることで、内容のブラッシュアップにつなげることが求められます。

デザイン思考入門

共感と洞察で切り拓く営業の極意

共感ってどう大切? 共感の大切さが一番印象に残りました。ユーザーの動作や発言に注目し、彼らの立場から本質的な課題を捉える観察力が必要だと感じました。また、誰がどのような状況でどんな課題に直面しているのかを明確にし、仮説に基づいた解決策を提供することの重要性も実感しました。 営業はどう変わる? BtoB向けの営業プロセスでは、自社商品やサービスの提供に留まらず、まずユーザーの課題を把握することが基本です。ユーザーの課題を観察し、仮説を立てながら顧客との検証を繰り返すことで、まだ気づかれていない本質的な問題にも気付くことができ、その結果、より効果的な営業活動(インサイト営業)につなげることができると感じました。 課題共有は必要? また、商談前に課題を共有する活動の重要性も印象に残りました。普段の業務においては、顧客サーベイやチームでのブレインストーミングを通じ、ユーザー視点の仮説を多々収集しています。その後、実際の検証結果をもとに、各メンバーが顧客との面談時の特性や仮説の内容を共有し、より質の高い対応策の検討へとつなげています。

データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

戦略思考入門

選択と集中で業務を効率化する方法

本当に捨てる意味は? 「捨てる」という行為は一見すると簡単に思えますが、意外と難しいと実感しました。ただ単に捨てるのではなく、目指すべきゴールを明確にすることで、必要なものと不要なものを選択する必要があると感じました。その際、数値的な根拠を示すことで、選択がより明確になると思います。限られた資源や時間の中で最速で目標に到達するには、「捨てる」ことが非常に重要だと感じました。 業務無駄は疑うべき? 業務効率化の観点でも、「捨てる」選択は必要です。たとえば、「以前からこうだったから」といった理由で行われている業務は、実際になぜ行っているのかわからない場合があります。このような業務には無駄があるため、「捨てる」ことを提案していくべきです。 業務改善の洗い出しは? 【業務効率化のステップ】 まず、自分の業務を洗い出してみましょう。その中で、不要な業務や惰性で行っている業務がないかを考えてみてください。不要だと感じた業務が本当に効果がないのかを検証し、その後、数値的根拠を示すことができれば、上司や同僚に提案を行うと良いでしょう。

「検証 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right