クリティカルシンキング入門

もっと伝わる!学びのヒント

メッセージの伝え方は? 自らが発信するメッセージをいかに分かりやすく伝えるかについて学びました。スライド作成では、人間の視覚的特性、すなわち左から右、上から下への視点移動を意識し、グラフなどの情報を適切な位置に配置することが必要です。また、特に強調したい点には着色を施すなどの工夫が効果的だと実感しました。文字表現においても、発信したいメッセージに近いイメージの色を用いることで、より伝えたい内容が明確になると感じています。 システム更新の説明は? 勤務先では、古いシステムを新しいものに更新する作業を担当しています。更新には一定の費用が必要なため、意思決定者に対して正確で分かりやすい説明が求められます。このような業務で説明資料を作成する際には、今回学んだ視覚特性を意識した情報配置や、グラフの効果的な活用などを取り入れて、より理解しやすい資料作りに取り組みたいと考えています。

データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

クリティカルシンキング入門

見せ方で引き出す活発な意見交換の力

グラフ作成の重要性とは? 読み手の目の動きや理解しやすさを考慮しながら、丁寧にグラフを作成する重要性を学びました。作成時間に制約がある中で、見せ方にこだわりすぎることはできませんが、最小限の努力で最大の効果を発揮するための思考が養われました。 活発な意見交換を促すには? 年度計画策定時の振り返りや顧客向けイベント企画のプレゼンテーション作成時には、多様かつ適切な見せ方によって、活発な意見交換を促すことができます。これにより、メンバー同士や顧客との円滑なコミュニケーションが図られ、さらなるアイデアの創出を目指しています。 誰にでも伝わる工夫とは? また、直接その業務に関わっていない方々にも、スムーズに理解してもらい、訴求力を備えた内容にするために工夫を凝らしています。文章や情報の羅列に終わらせず、見せ方に注意を払い、配慮の行き届いたものを提供するよう努めています。

データ・アナリティクス入門

平均値から見える数字の世界

代表値と散らばりは? 今回の研修では、動画の代表値として単純平均、加重平均、幾何平均、中央値について学びました。それぞれの特性や使い方を理解し、また、代表値だけでなく標準偏差などを用いた散らばりの解析も重要であることを再認識することができました。グラフ化する前には、まず仮説に基づいて適切な数値を選び出し、データの理解を深める必要があると実感しました。 業務にどう活かす? 業務においても計数を扱う際には平均値を使う機会が多いですが、その使用が本当に妥当かどうかを検討する習慣を身につけることが大切だと考えています。今回学んだ内容をもとに、平均値や散らばりを踏まえてグラフ化することで、自分自身が作成したグラフだけでなく、他者が作成したグラフについても、その値や構成が適切かどうかを確認できると感じました。こうした取り組みは、全体のデータの精度向上につながると考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

クリティカルシンキング入門

業務効率アップの鍵を見つけた日

受講内容の価値とは? 受講した内容は非常に有益で、自分の視点を一段階広げてくれました。特に、問題解決のためのフレームワークを学ぶことで、日々の業務に対するアプローチを再評価する機会が得られました。この学びを活用し、今後はもっと効率的に仕事を進めていきたいと考えています。 実践的な知識はどう活かす? また、講義中に紹介された事例は非常に具体的で、自分の業務にも即座に応用できると感じました。このような実践的な知識は、理論だけでは得られない深い理解をもたらしてくれます。特に、チームでのコミュニケーションやリーダーシップに関する部分は、大いに参考になりました。 チーム成長のための次のステップ ここで学んだことを基に、自分自身だけでなくチーム全体が成長できるよう、今後も努力を続けていきます。この講義が提供する価値は非常に高く、受講して本当に良かったと思います。

クリティカルシンキング入門

クリティカルシンキングで視野を広げるコツ

伝え方はどうする? クリティカルシンキングにおいて、課題解決と他者に納得感を持ってもらえるように伝えるコミュニケーションが重要であることを深く学びました。特に、自分自身を俯瞰して見る視点が、クリティカルシンキングを実践する上で非常に大切だと感じました。 視点をどう広げる? 具体的には、日々の業務の中でのプロジェクトやミーティングにおいて、会議資料を作成したり意見交換を行ったりするときに、自分を俯瞰することを心掛けています。これにより、「3つの視」すなわち視点、視座、視野を広げる思考法を意識して取り組むことができると考えています。 思考をどう整理? さらに、「3つの視」を意識しつつ、ただ思いつくままに書いたり話したりするのではなく、MECEの考え方を活用しながら客観的な思考を習慣づけ、他者とのディスカッションを通して反復トレーニングを試みたいと思いました。

データ・アナリティクス入門

最初の問いで未来が変わる

初めの問いは大切? 課題解決における「What、Where、Why、How」のプロセスに一貫して取り組むことで、最初のWhatが後の回答に大きく影響することを実感しました。初めの問い立てがずれると、以降のWhereや他の要素にも影響が及び、作業が困難になる経験をしました。そのため、最初の問いの重要性を強く感じました。 広い視野は必要? また、総合問題に取り組む中で自身の業務と照らし合わせ、さまざまな角度からの視点が求められる一方、業務に慣れると視野が狭くなっていることに気づきました。広い視点を保つ重要性を改めて認識し、視野の狭さがもたらす機会損失について実感しました。 余裕をどう保つ? さらに、データ分析から検証に至るプロセスは、疲れが溜まると取り組みづらくなるという現実もあり、余裕を持って作業に取り組むことの大切さを感じる良い機会となりました。

データ・アナリティクス入門

全体像から磨く問題解決術

今週の学びは、以下の2点です。 問題解決の手法は? まず、問題解決のフレームワークである「MECE/もれなくダブりなく」を徹底的に磨くことの重要性を感じました。この切り口で問題や課題に取り組むと、全体像の解像度が格段に上がるという実感があります。 問題の特定方法は? 次に、最初に問題を正確に特定することがポイントであると学びました。最初の当たりがずれてしまうと、その後の原因分析や課題解決の方向性にも影響が出るため、問題や原因が的確に把握されているかを常に確認する必要があると感じています。 対策の基準は? また、これらは業界や具体的な問題解決の種類を問わず、普遍的なスキルであると理解しています。日常業務では他者の解決策を参考にする機会が多いですが、それぞれの対策が正確に特定された問題とその原因に合致しているか、今後も意識して確認していきたいと思います。

データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。
AIコーチング導線バナー

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right