データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

アカウンティング入門

損益計算書で知る企業の本音

どの数字に注目する? 損益計算書を読み解く基本的な考え方は、まず大きな数字―売上、営業利益、経常利益、当期純利益―に注目することから始まります。これらの数字を押さえることで、企業の概況が把握でき、さらに各項目を比較や対比することで傾向や相違点を見出すことが可能です。こうした考察により、企業が大切にしている価値を損益計算書から読み取ることができます。 各項目の意味は? 具体的には、売上は事業規模を示し、値引き販売が影響すると売上総利益が減少する場合もあります。売上原価が高いと、原材料費の上昇や高原価率商品の売上比率が高い可能性が考えられます。営業利益は企業の本業における利益を示す一方で、必ずしも経営全体の状況を反映しているわけではありません。経常利益は本業外の収益や費用を含み、企業の借入状況などを把握する手がかりとなります。そして、当期純利益は臨時的な活動――たとえば災害や不動産売却など――の影響も受けるため、最終的な利益として重要な指標となります。 知識をどう活かす? この知識は、関連会社との折衝や制度改定の検討時に経営状況を確認するために活用できます。また、適正な労働分配率などを計算し、グループ内や業界内の比較を行うことで各社に具体的な数値を提示する際にも役立ちます。各社の損益計算書をもとに計算するという実践的なアプローチが、具体的な理解と説得力のある説明につながります。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

クリティカルシンキング入門

問題解決の視点を変える新しいアプローチ

問題分析の新たな視点は? 問題を分析する際、私は分解して考えることが重要であると認識していました。しかし、まず全体をしっかり定義した上で、MECE(漏れなくダブりなく)を意識した分解方法を考慮することの重要性を理解しました。さらに、その切り口が適切であるかどうかを見直し、別の視点からアプローチすることの必要性も理解しました。 プロジェクトの収益化戦略とは? 担当部門の売上や利益を拡大する際には、プロジェクト別に社員一人当たりの売上や利益、平均単価を算出し、それぞれのプロジェクトを比較することで問題のあるプロジェクトを特定します。その上で、効率的な単価の引き上げや、社員とビジネスパートナーの入れ替え、もしくはプロジェクト継続を諦めてより収益性の高いプロジェクトにリソースを振り分けるという対策を導き出すことが可能になります。 部門の売上拡大にどう貢献する? 社員一人当たりの売上を向上させるために、社員とビジネスパートナーの入れ替えや単価アップの交渉の推進が有効です。ただし、業務知識を有する社員の配置換えは現場への負担も大きいため、十分に検討した上で実施することが求められます。また、社員のローテーションを可能にすることで、プロジェクトを離れる社員には新たなプロジェクトを担当させ、その際もビジネスパートナーを活用することで、部門全体の売上拡大につながると考えます。

アカウンティング入門

経営理念とPLを連動させる実例学習の魅力

アキコのカフェで学んだこととは? アキコのカフェ事例を通して、PLを活用してビジネスモデルや経営理念を浮き彫りにする方法を学びました。理念を維持しながら利益を上げることが重要であり、アキコのカフェの場合、手軽さや日常感がコンセプトです。そのため、値上げではなく、仕入れの原価調整や多くのお客様に来店してもらうための施策、回転率の向上などの手段が必要です。 PLを面白く学ぶには? これまでPLは無味乾燥な数字の羅列に思えましたが、学習を通じて「難しくなくて」「面白くて」を実感できるようになりました。 自社分析で何を考慮する? 自社の分析においては、経営理念に沿ったお金の使い方をしているかを検討し、今後の資金使用にも活用できることを確認しました。業界的には属人化しやすい面がありますが、社員を大切にすることがPLにも反映されているかを見極め、それをさらに他社との差別化のために投資していきたいと考えています。 学習時間をどう確保する? まずは定期的な学習時間の確保が必要です。平日は業務に追われることが多いので、週末の朝に学習時間を設ける習慣を作ることが重要です。それができたら平日にも学習時間を拡大します。具体的には、PLの分析とインプットを行います。同業他社や近隣業種のPLの分析、さらに優秀とされる企業のPLを比較し、経験値を増やして苦手意識を払拭していきます。

アカウンティング入門

企業のB/Sで見つける成功の鍵

B/Sの理解はどうする? B/S(貸借対照表)は企業の資金調達とその使用方法を示しており、事業のコンセプトを理解する助けになります。資産や負債の流動・固定比率から、企業の事業形態を推測することができ、純資産比率が高い企業は安定性があると考えられます。たとえ負債が多くても、市場が安定している場合には、その安定性について異なる視点で考えることも可能です。最初はB/Sを扱うことに難しさを感じていましたが、学習を重ねることで少しずつ慣れることができました。 事業モデルの意義は? 事業モデルにおいては、B/Sを通じて資産の使い方や利益源を探ることができます。資金調達の方法、資産管理、負債と純資産のバランスを検討することで、ビジネスモデルのチャンスを見出すことができます。このように、B/Sから読み取れる情報に基づいて事業モデルを考えることが、ビジネスの成功につながると感じています。 学習の習慣はどう? 今後は、定期的にB/Sに触れることで、ビジネスモデルとの関連性を習得することを心掛けたいと思います。例えば、新聞などで決算や資金調達に関する情報を見た際には、その企業名を記録し、時間があるときにIRを確認する習慣をつけたいと考えています。また、金融機関全体のB/Sを横比較することで、各企業の強みや弱みを把握したいです。これらの取り組みが、より深い理解に繋がると考えています。

データ・アナリティクス入門

小さな実験、大きな発見

テスト比較の狙いは? A/Bテストでは、施策の比較効果を検証するため、比較対象のグループ間での差異を可能な限り限定することが重視されています。例えば、目的や仮説を明確にし、検証項目をしっかり設定することが大切です。また、テスト対象は1要素ずつに限定するべきであり、複数の要素を同時に検証したい場合は、別の手法を検討する必要があります。さらに、比較実験は同時期に実施することで、外部要因の影響を排除する狙いがあります。 利用段階の課題は? ファネル分析については、ユーザーの利用段階ごとに各プロセスを分解し、どの段階で離脱が発生しているかを明らかにする手法です。デジタルマーケティングでの活用は非常に効果的ですが、営業活動における利用も十分に期待できると感じました。ただし、営業活動の場合は、各担当者が利用プロセスや各段階(Stage)の定義を正確に理解し、適時更新することが不可欠です。例えば、Stageの更新が一度に行われる場合や、同一状況でも担当者によって判定が異なる場合、分析の精度が低下する恐れがあるため、その点に留意する必要があります。 全体の改善点は? さらに、Top、Middle、Lowパフォーマー各グループでの離脱状況の違いや、全体で共通して離脱が目立つ段階を把握することで、どの段階に改善の余地があるのか具体的に見極めることができると考えました。

データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

マーケティング入門

顧客視点で切り拓く独自価値の道

普及要件ってどう? イノベーションの普及要件として、比較優位、適合性、わかりやすさ、試用可能性、可視性が重要であると学びました。ある成功事例では、家庭での利用に適した製品特性や、明確なコンセプト、そして技術やマーケティング施策の可視性が評価されていると感じました。また、売れるためには顧客心理の理解が不可欠で、競合に左右されずに独自の価値を追求することが大切であるという点も印象的でした。 価値観は整えられて? 現在の業務に照らすと、新たに携わっているプロダクトでも、世界観や価値観の適合性、コンセプトの明瞭さ、さらには技術や物性の可視性をより一層明確にする必要性を感じています。新商品を考える際、ついマスマーケティングに偏りがちですが、顧客のニーズを丁寧に探り、特定の市場で認められる価値を創出する戦略が成功への鍵であると実感しました。 ブランドの魅力は? 新規性のある商品の開発においては、ブランディングや提供すべき情緒的価値を持つ類似製品について、顧客視点で売れる理由やその対策を考えることが求められます。今後は、インタビューを通して顧客のインサイトを深く掘り下げ、顧客ニーズと乖離しないブランディングを実現することを目指します。また、現行プロダクトにおいても、イノベーションの普及要件を整理し、何を強調しどのように魅せるかを検討していきたいと考えています。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。
AIコーチング導線バナー

「比較 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right