データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

データ・アナリティクス入門

仮説と比較で未来を拓く

仮説の組み立て方は? 仮説を立てるための考え方について、業務に取り入れていきたい点をまとめました。まず、「分析とは比較」であるという点を意識し、比較対象を設けることで、他者にも分かりやすい分析を目指します。また、問題解決の仮説を立てる際には、What(問題は何か)、Where(どこに問題があるか)、Why(なぜ問題が発生するか)、How(どのように対処すべきか)の4つのプロセスを順に追うことで、解決策を推進していきたいと考えています。さらに、常識を疑い、新たな情報と組み合わせながら発想を止めず、創造的な仮説に肉付けを加える方法も取り入れていく予定です。 フレームワークの活用は? また、動画学習で触れたフレームワークも業務に積極的に取り入れることで、より実践的なアプローチが可能になると考えています。 毎月の数値分析法は? 具体的な取り組みとして、まずは毎月の数値分析に注力します。解約数やサービスの利用状況に下落傾向が見られた場合、商品やサービス自体に問題があるのか、利用顧客の属性に原因があるのかを、対前年比に加えて他年度や学年、属性別といった複数の比較軸で検証し、どこにギャップが生じているのかを明確にしていきます。 WEB数値の変化は? 次にWEB数値の分析にも力を入れます。今後のWEBサービスの定期的なリリースに合わせて現在の数値を把握し、増加する数値が示す傾向を基に、即時に対策を検討できる体制を整えたいと思います。 資格取得で成長は? 数値に対する意識を継続して高めるため、分析関連の資格取得も視野に入れ、さらなるスキルアップを図っていくつもりです。

マーケティング入門

新サービス普及の鍵は適合性と試用可能性

イノベーションの普及要件とは? 比較優位、適合性、わかりやすさ、試用可能性、可視性がイノベーションの普及要件であるという話は、非常に印象的でした。特に、試用可能性と適合性については、新しいサービスや商品に顧客を移行させたい今の時代において、必要不可欠な観点だと感じました。例えば、スマートフォンの普及は、元々ガラケーで電話を持ち歩く文化や、PCのWEB活用の素地があったからこそ、スムーズに進んだと考えます。 セグメンテーションの重要性 また、現代は価値観が多様化しているため、セグメンテーションを細かくし、自社にとってどこがメリットなのか冷静に判断することが重要だと理解しました。具体的には、ハーゲンダッツが「大人のアイス」というターゲットを設定し、「ご褒美に買うアイス=プレミアムアイス」という新たなジャンルを開拓した例が挙げられます。 誰に何を伝えるべきか? お金を借りることに抵抗がある人が大半であるため、セグメントをしっかり行い、どの層に何を伝えるか(例えば、低金利で無担保融資が可能であること)を明確にすることが重要です。さらに、実際にどのようなシーンでお金を借りることができるのか(教育、旅行、結婚など)を具体的に伝えることが求められます。 自社サービスの再検討方法 このように、イノベーションの普及要件に基づいて商品を見直すことや、競合を意識することの重要性を改めて認識しました。これを機に、自社のサービスの長所や、プロモーションで顧客に与えたいイメージ、行動変数を含めたマーケット選定、プロモーションの方法を再検討していきたいと考えています。

戦略思考入門

視座を高める!フレームワーク活用術

経緯と意見をどう文章化する? 実践演習では、経緯や意見が文章化されているため、より俯瞰的に考えやすくなったと感じました。リアルな状況ではなかなか難しいことです。 視座を高く保つ重要性 まず、視座を高く持ち、全体的に見て価値が生み出せるかを考えることが重要です。また、他の人の意見を聞き、抜け漏れなく情報を整理すること。そして、情報整理にはどれかのフレームワークを活用することが大切です。この3点は普段意識が薄れてしまうことがあるので、これからは意識的に取り入れ、業務の中で自然に活用できるようにしていきたいと思います。 フレームワークをどう使うべきか? 私の所属するグループでは、「フレームワークを活用しろ」という指示が度々あります。しかし、よくある問題として、前後の情報の繋がりもなく、フォーマットを埋めただけで満足してしまうことがあります。今回の学習で、フレームワークの使用目的や、整理された情報をどう繋げるのかを学んだため、まずは基本の3Cに立ち返って取り組んでいきたいと思います。 不足情報はどう補う? 新規事業領域に携わっている特性上、市場形成が未成熟だったり、自社が初めて参入を検討する領域であったりするため、情報蓄積が不足しています。まずは現在持っている市場環境や競合、見込み顧客へのヒアリング結果を集約し、それを3CとSWOTのフレームワークに当てはめて、不足している分析を整理しようと思います。整理した内容については、メンバーと共有し、過不足を確認した上で、現在の事業計画と比較。根拠の薄い要素や計画に修正が必要な点を洗い出して進めていこうと思います。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

データ・アナリティクス入門

切り口が未来を拓く

どんな仮説を考える? 仮説を事前に多角的に考えることが重要です。仮説を構築するための材料として「比較の軸」が存在し、Week2の設問4では「どのような切り口が考えられるか」という問いかけがありました。そこで、いくつかの切り口を無理のない範囲で検討した結果、Week3の設問1における仮説パターンの設定が容易になりました。切り口がなければ、「30歳前後のビジネスパーソン」以外の像を描くのはすぐに行き詰まってしまいます。しかし、切り口を明確にすることで、切り口の個数や各切り口が持つ要素数が設定でき、その掛け算によって仮説パターンを構築する枠組みが整います。仮説は「そのパターンであれば、どのような状況や条件が考えられるか」という、一定のとっかかりをもって検討することが可能となります。 成長指標をどう見る? また、事業の成長を示す指数の設定についても考える必要があります。成長の指標としては、直接的には「売上」や「利益」が挙げられますが、これだけでは解像度が低く、分析やそれに基づくアクションの軸としては不十分です。エリアや商品分類ごとといった軸を設定し、より具体的な分析ができるように解像度を上げる必要があります。 どんな軸で考える? さらに、軸を設定する段階ではまず「切り口」となるアイデア出しが求められます。たとえば、分かりやすい切り口として「エリア」や「商品」が考えられますが、その他に「時間」や顧客側の分類(顧客、部門、属する業界など)も有効です。このようなアイデア出しの際には、ロジックツリーやブレーンストーミングといった手法が有効に活用できると考えます.

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

マーケティング入門

売れる理由は5要素の秘訣

売れる理由は何? 売れる理由を考える際は、「これだけで売れる」という一点に頼るだけでなく、さまざまな視点から売れる理由や売れない理由を検討することが大切だと感じました。その中でも、無限に考え続けるのではなく、「比較優位性」「適合性」「わかりやすさ」「試用可能性」「可視性」という5つの要素に絞ることが効果的だと思います。特に「わかりやすさ」と「可視性」については、一歩引いて全体を見直さないと、顧客のニーズを見失う可能性があると気づきました。整理した考えを知人に意見を聞くなどして、効果的にブラッシュアップすることも有意義でした。 誰の課題を解決? 一方、自社サービス(BtoB)が具体的にどのような企業の、どのような課題を解決するのかという点に関しては、自身の中で十分なイメージを持てていなかったと反省しています。今週の例では、「インスタント食品」という大まかな印象は伝えられるものの、具体的に解決すべき課題が明確になっていないため、市場に十分に訴求できていないと感じました。サービス名から直感的にどのような商品かイメージしづらいため、サービス名を見直すことで上記5つの要素を再評価できるのではないかと思いました。 サービス名は適切? また、サービス名から実際に商品やサービスのイメージが湧き、使ってみたいと感じてもらえるかどうかを確認するため、可能であれば経営者の知人など、ターゲットに近い層に意見を求めるのが良いでしょう。その前に、顧客を分類し、絞り込みを行った上で、一致する層の方々にアポイントを取ることが重要だと考えています。

アカウンティング入門

提供価値に気付く会計分析

会計データの意味は何? 会計データが単なる数字や割合ではなく、企業が顧客に提供する価値と密接に結びついた「意味ある情報」として捉えられる点が印象に残りました。企業の提供価値やビジネスモデルに即してP/L・B/Sを分析することで、従来は抽象的だった数字に具体的な背景が読み取れるようになったと感じています。また、異なる業界の事例を比較検討することで、業界特性やビジネスモデルがより明確に理解できるという新たな視点も得られました。 比較で何を発見する? 受講直後は、競合企業との比較に重点を置いていましたが、異業種との対比により新たな発見があることに気付かされました。もともと自社は通信制の教育事業を中心に展開しているため、同業他社との比較が主でしたが、コンテンツ配信の観点から他業界の会計データを参照することで、売上原価の削減など別の改善策を検討する余地が見えてきました。今後は「提供価値を意識した会計データの読み解き」と「比較・対比を通じた気付き」を大切にしていきたいと考えています。 異業種の決算書は何を示す? また、新規事業立案にあたっては、競合のみならず異業種の決算書も調査し、従来の儲け方以外の可能性や資金の使い方、調達方法について幅広い視点で検討していきます。具体的には、5月末までに決算書が提出される企業の事例を調べ、6月中に自社との比較分析を行う予定です。決算書全体を細部まで追いかけるのではなく、主要な利益項目など大きな数字に注目し、グラフなどを活用して全体の傾向を把握した上で詳細な分析に進むことを意識していきます。

データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

戦略思考入門

常識を覆す独自アイデア

何が差別化の鍵? ありきたりのアイデアに簡単に飛びつくのではなく、徹底的に考え抜くことで差別化が実現できると考えます。その際、他業界の事例や多くの知見を活用することが重要です。 本当に新たな視点は? ライバル企業に過度に意識を向けるのではなく、全く新しいアプローチを模索することが求められます。市場や顧客のニーズと自社の強みを見極め、従来とは異なる視点から製品やサービスを企画する姿勢が大切です。 持続可能な施策は? 差別化を考える際には、実施する施策が持続可能であるかどうかも十分に検討する必要があります。加えて、業務プロセスや組織としての能力を高めることで、模倣が困難な体制を築くことが差別化を確固たるものにします。 比較以外の学びは? これまでのアプローチは、同業他社との比較を通じて差異を見出すことに重点を置いていました。しかし、今後はあえてライバル比較の枠組みから離れ、他業界の成功事例を学び、その中で差別化の要素を見出すことにシフトしていきます。 成功事例を追えてる? 具体的には、BtoBのサービス業界で業界シェアを拡大している優良事例を取り上げ、どのように差別化を実現してきたかを研究します。その中から自社に応用可能な要素を抽出します。 市場の未来はどう? さらに、マクロ環境の分析や顧客分析を通じて、今後市場でニーズが拡大すると仮説される分野を見極め、自社の強みを活かした新たなサービスや施策を検討します。そして、その計画の中にどのように差別化を組み込むかを丁寧に考察していきます。
AIコーチング導線バナー

「比較 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right