データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

クリティカルシンキング入門

MECEで紐解くデータの真実

分析精度はどう上げる? 今回の学習を通して、データの分け方によって答えにぶれが生じること、また分解方法によっては誤った結果にたどり着いてしまうことを改めて体感しました。まずは多くの分け方や分解方法を列挙し、何度も試行と分析を重ねることで、より精度の高い分析結果を導けるのではないかと感じています。その際、MECEの考え方が重要であることも学び、層別分解、変数分解、プロセス分解を用いることで、もれや重複なく整理する大切さを実感しました。 投資家は何を求める? また、機関投資家に対する営業活動の観点からは、自社商品のニーズがどのような属性の投資家にあるかを検討する際に、本学習で得た知見が活用できると考えています。既存の取引先データを加工・可視化し、様々な切り口で分解することで、アプローチすべき投資家像を明らかにできると感じました。さらに、自社商品のプレゼンテーション資料作成においても、特徴や傾向を多角的に可視化し、投資家に商品性への理解を深めてもらうための有効な手段として活かしていきたいと思いました。

データ・アナリティクス入門

データで広がる学びの可能性

仮説はどう広がる? フレームワークの視点を活用することで、仮説の幅を広げることができます。既存のデータを活用する方法と、新たにアンケートなどでデータを収集する方法の二つがあります。まずは自社や公表されているデータから問題を絞り込み、次に知りたいことを軸に必要なデータを集める流れが重要です。 急変時に何を検証? あるデータが急に増減した場合、時間をかける前にまず仮説を立て、その仮説を裏付けるためにどのデータが必要かを検討しながら分析を開始することが求められます。ひとつのデータに固執せず、同時期の他のデータも合わせて確認することで、多角的な視点が得られるでしょう。 データ整理はどう進む? 業界では多くの公表データが存在しますが、それぞれのデータに何が含まれているのかを把握できていないケースがしばしばあります。まずは各データの整理を行い、その上で社内に共有し、他部署とも同じ視点で把握するよう努めます。直感や経験に頼るだけでなく、データで検証するという姿勢を社内に広めていくことが大切です。

クリティカルシンキング入門

多角的視点で浮かび上がるデータの真実

グラフ化の効果は? データの見せ方としてグラフ化を活用することで、一覧表では捉えにくかった増減や変化が一目で把握できる点に大変感銘を受けました。試行錯誤を通じて、どの角度からデータを分けるとより具体的な傾向が見えてくるのか、その方法論を実感することができました。 切り口は十分? また、データを分解して考察する際には、最初の切り口だけでは十分な特徴が浮かび上がらない場合もあることを学びました。そのため、別の視点を追加してさらに分解することで、要因をより明確に特定できるようになると感じています。常に「それって本当に?」と疑いながら丁寧に詳細を追求していく姿勢が、根拠を深める鍵だと実感しました。 多角視点は有効? さらに、分析する際には、顧客の属性、購買動機、来店経路など複数の切り口を用いることで、現場での具体的な戦略やアクションに結びつけるための理論的枠組みが形成されると感じています。一つの視点に固執せず、多角的にデータを分解する試みは、今後の実践においても大いに参考になると実感しています。

戦略思考入門

競争相手も味方に変える学び

競争相手をどう捉える? これまで自社と顧客の両面から分析を進めてきましたが、競争相手という視点での分析はあまり踏み込んでいなかったと感じています。しかし、戦略に優れたリーダーの思考にある「大局的に見る」という考え方を学ぶ中で、これまで以上に広い視野で物事を捉える重要性を実感しました。 現場改善の必要性は? 新たな顧客との取引が増え、今後もさらにその傾向が強まる中で、求められているのは製造現場の見える化や社内のリードタイム短縮です。これまで自社と顧客の視点を中心に分析してきましたが、今後は競争相手の動向も取り入れ、他社の現場を視察するなどして、客観的な情報を取り入れる必要があると考えています。 自社の強みは何? また、3C、SWOT分析、バリューチェーン分析という三つの手法を学ぶ中で、特に自社の強みを明確にする点に苦慮しました。日頃から自社の改善点に目が向きがちなため、強みを抽出する視点を持つことが難しく感じられます。皆さんはどのような方法で自社の強みを浮き彫りにされているのでしょうか。

データ・アナリティクス入門

「what」から「why」へ。思考再発見

なぜ「why」から考える? 自分は、どうしても思考のプロセスで「why」から入ってしまう癖があることに気づきました。たとえば、なぜ入会したのかという疑問が、いつも最初に浮かんでしまいます。 いつからwhyを深掘り? しかし、いきなり「why」に注目して分析を進めると、アンケート回答などの定性的な情報に頼ることになってしまいます。そこで、適切なタイミングで「why」を深掘りするための前提として、まずは「what」や「where」といった要素を整理できるようにしたいと考えています。 どうして結果は変わる? たとえば、売上目標に対する進捗状況が良い場合や悪い場合において、どうしてそのような結果になったのかを分析し、次の施策を立てる場面では、最初に「なぜ」から入り込むのではなく、まず「what」や「where」を明確にしてから「why」にアプローチすることが重要です。具体的には、ロジックツリーを活用して事業を構造的に分解し、問題の起因部分を明確にする方法を取り入れることが有効だと考えています。

クリティカルシンキング入門

経営戦略がスッと頭に入る、新しい学び

学びの収穫とは? ナノ単科の講義を受講して、非常に有益な学びを得ることができました。特に、経営戦略の立案方法についての具体的な事例や分析手法が理解しやすく、実務に役立つ内容でした。 講義構成はどうだった? まず、講義の構成が非常に論理的であり、一つ一つのトピックが順序立てて説明されていたため、内容が頭に入りやすかったです。講義で使われる用語も適切で、専門的な内容でありながらもわかりやすく説明されていた点が良かったと感じます。 実践的手法の活用は? また、経営戦略を立案する際に必要となる実践的な手法や、実際のケーススタディを通じて具体的な状況にどう対応すべきかが学べたことが大きな収穫でした。特に、自分の業務に直結する事例が多く取り上げられており、学んだ内容をすぐに応用できる点が魅力的でした。 知識が整理されるとは? このナノ単科講座を通じて、これまで漠然としていた知識が整理され、実務に直結するスキルが身についたと感じています。今後もこのような形で学びを深めていきたいと思います。

データ・アナリティクス入門

新たな指標で描くデータの未来

どうしてデータ加工が必要? これまで、データ分析では単純平均や標準偏差、棒グラフ、散布図など、一般的な方法を用いてきました。しかし、集めたデータを適切に加工しなければ、想定していた答えや正確な結果を得るのは難しいと学びました。今後は、必要に応じて加重平均や中央値などをより効果的に活用していきたいと考えています。 どの指標が本当に有効? また、単純平均や標準偏差だけに頼ると、データの見え方が一面的になりかねません。そのため、加重平均や幾何平均、中央値といった指標を取り入れ、どの指標がデータを最も適切に表しているのかを検証しながら分析を進めたいと思います。これまでとは異なる視点からデータが見えることを期待しています。 なぜ仮説検証が重要? 特に、私の業務は問題解決のための分析とあるべき姿の考察の両面に関わるため、その時々で適切な仮説を立て、データの表し方を工夫することが求められます。状況に応じた分析手法を積極的に取り入れることで、より正確なデータ分析に繋げていきたいと思います。

クリティカルシンキング入門

伝わる資料作りの秘訣

グラフや色の選び方は? 資料作成において、グラフの使い方やフォント、色の選定といった点に気を配ることで、伝えたい内容がよりわかりやすくなると学びました。何を伝えるのかを明確に整理し、その内容に適したグラフを用いることが大切だと実感しました。 文章工夫はどうする? また、文章についても読者にしっかり伝えるための様々な工夫が存在することを学び、今後の表現方法の参考にしたいと感じています。 営業資料の作り方は? 今回学んだグラフの作り方を活かして、営業会議用の資料を作成する予定です。事業ごとの売上推移や売上構成比など、過去から現在までの変化を把握し、注力すべき事業や見直しが必要な事業を視覚的に示せると考えています。 情報収集のポイントは? さらに、伝えたい状況や状態をグラフに反映させるために、必要な情報が十分に集められているかどうかを確認することが重要です。適切な情報がなければ正しい現状分析ができないため、情報収集の方法や、集めるべきデータの有無についても見直していきたいと思います。

戦略思考入門

無駄を省く戦略のはじめかた

戦略思考の基本は? 戦略思考とは、適切なゴール設定を行い、そのゴールに向かう最短最速の道筋を設計することだと捉えました。むやみがむしゃらに取り組むのではなく、無駄を省きながら内部と外部の両面から深く広い視点で物事を捉える必要があると感じています。 分析視点は変わる? また、自社の今後の戦略立案において、今回学んだフレームワークを積極的に活用していきたいと考えています。今までの3C分析では市場、他社、自社に焦点を当てていましたが、今回のコースで市場だけでなく顧客や、直接的なサービス競合以外の他社にも目を向けるべきだという学びを得ました。この気づきをもとに、分析を再度見直し、整理していく予定です。 PDCA活用の方法は? 具体的には、分析結果をまとめた資料を上司に提出し、フィードバックを得た上で修正を加え、再度提出するというPDCAサイクルを徹底して回していきたいと考えています。今回の学びは非常に多く、インプットだけでなく、アウトプットを重ねることで着実に理解を深めていきたいと思います。

アカウンティング入門

数字バランスで見える成長戦略

財務状況把握はどう? 総合演習では、異なる職種のP/LやB/Sを確認し、各項目の割合を把握することの重要性を学びました。企業の資産と負債、流動資産と固定資産、さらには総資産のバランスをチェックすることで、財務状況がどのようになっているかを総合的に理解でき、どこに課題があるか、また目標をどのように設定すべきかが明確になると感じました。 設備投資計画はどう? 設備投資を行う際には、まず自社のP/LとB/Sから財務状況を確認します。その上で、設備投資に必要な自己資本比率が十分であるか、過去の利益からどの程度の資金を設備投資に充てられるかを見極め、全体のバランスを考慮した計画を策定することが大切だと思います。 資金調達は何が必要? さらに、過去の実績も踏まえた現在のB/S分析結果をもとに、次年度の設備投資に必要な資金調達方法を検討します。新規借入の必要性や資金調達計画を立て、その数字をB/Sに反映させることで、全体のバランスを意識した設備投資計画を立案できるようにしたいと考えています。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right