データ・アナリティクス入門

仮説から未来を拓く学び

なぜ仮説は大切? 「良い仮説」という言葉が非常に印象に残りました。これまで、問題が発生した際には、過去の経験や思い込みに基づいた一方的な判断に頼っていた部分があったと感じています。今後は、問題に対して複数の仮説を立て、それぞれを検証していくことが大切であると考えています。 売上課題の原因は? 私の担当している製品販売では、代理店を通じた受注や売上に関する問題が頻繁に生じます。こうした課題に対しては、さまざまな仮説を立て、検証を進めることで問題解決を図る必要があります。特に、施策と受注売上の関係性を十分に考慮して対応することが重要だと思います。 セミナーの現状は? まずは、施策に関する問題点を整理することから始めます。長年、定期的にセミナーなどを実施してきましたが、必ずしも思うような成果に結びついていない現状があります。今後は、まず顧客のニーズを正確に把握し、現行のセミナー内容が実際に顧客の要望に合致しているのか、改めて検証する必要があると考えます。 3C分析で状況は? そして、まずは3C分析を通じて状況を明確に把握した上で、複数の仮説を立て、順次検証を行っていくことで、今後の改善策を模索していきたいと思います。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

データ・アナリティクス入門

平均値の活用で変わるビジネス戦略

平均値への新たな気づきは? 私はこれまで、単純平均値、中央値、標準偏差については書籍を通じて知識を得ていましたが、加重平均や幾何平均の重要性について十分に理解していませんでした。特にビジネスにおけるこれらの"平均"の概念の重要性に気づかされました。単純平均値では、表層に現れる数字とユーザーの実感が一致しない場合があり、「平均値(単純平均値)はあまり使えない」という固定観念を持っていました。しかし、その観念は、自分自身が適切な活用方法を知らず、また選択できていないことに起因していると気づかされました。 加重平均がもたらす変化 これまでは単純平均値を用いて、少額製品の評価が難しいと感じ、売上の大きい少数の製品に解析の重点を置いていました。しかし、今後は加重平均値を用いた分析を行うことで、少額製品の販売単価にも注目し、損益分岐点を明確にすることができるのではないかと感じています。 来期計画に反映する方法は? 現在、来期に向けた活動計画の策定を進めており、今回学んだ代表値の考え方を売上分析に反映させる予定です。これにより、前期とは異なるアプローチでデータを作成し、その結果を上位メンバー会議で審議する予定です。

データ・アナリティクス入門

ロジックで紐解く成長のヒント

問題をどう洗い出す? 今回の学習では、まず何が問題であるかを洗い出し、その問題箇所を明確にすることの重要性を学びました。問題の原因を詳しく分析し、対策を検討・実行するプロセスや、結果から各要因を考察する点、さらに理想と現状のギャップを埋めるための工夫が大切であると実感しました。 分析手法は何か? また、分析手法としてロジックツリーやMECE分析、さらに階層分析と変数分析の活用が有効であることを学びました。これらの手法を用いることで、データの整理がしやすくなり、効率的な分析が実現できると感じます。 実例で何を発見する? 具体例として、交通系ICカードの決済データを利用し、加盟店やキャンペーンごとの売上分析に応用できる可能性があると考えました。売上分析においては、年代、性別、居住地、曜日などの視点で検証し、来店回数や決済金額の傾向も踏まえて全体的な分析に役立てたいと思います。 量と質のバランスは? 最初の段階では、質よりも量を意識して経験値を積むことが重要と考えています。質も適度に保ちながら、実践を重ね、ロジックツリーやMECE分析を積極的に活用してデータ分析に取り組んでいきたいと思います。

クリティカルシンキング入門

問いを共有して成果を引き出す秘訣

正しい問いの立て方は? 問題に取り組む際に、初めに正しい問いを立てないと、間違った問いに対する施策では成果が得られません。会議ではその日の問いを皆で共有し、それを常に忘れずに問いに立ち返ることの重要性を痛感しました。組織でこのような徹底をしないと、同床異夢になってしまうことがよく分かりました。例えば、売上をどのように構成要素に分けるかといったトレーニングは非常に勉強になりました。 業績比較で何が見える? 業績推移を2000年と2024年で売上や単価、件数、社員数、求人数、求人決定数、担当者毎のスカウト数や返信率などを比較することで、多くのことが明確になり、予測可能なことが増加すると考えます。こうした分析により、現状の科学的特定が容易になり、自社の業績に外部環境がどのように影響しているかを理解しやすくなります。 会議でどう問いを活かす? 日常のリーダー会でも、優れた問いを皆で共有し、会議が終わるまでその意識を保ち続けることが肝要です。打ち合わせ記録にもアジェンダの他に問いを共有すると効果的です。年末年始には過去5年の業績推移を分析し、何が何と相関があるのかを明らかにすることが可能だと思います。

クリティカルシンキング入門

イシュー設定の重要性と技術活用法の探求

イシュー設定の重要性とは? イシューを設定することの重要さと難しさを実感しました。どのようなシチュエーションでイシューを設定するかによって、答えが大きく変わることを学びました。例えば、売上を上げるためのイシューにおいて、顧客の信頼を失っている時には価格を上げる決断は難しいですが、信頼を得ている時には価格を上げる選択も正しいと考えられます。状況をしっかりと分析し、適切にイシューを設定することが重要だと感じました。 技術の価値はどう測定する? 私たちの企業において技術の探索を行う際、技術の価値をピラミッドストラクチャーで分解し、その活用法を探ります。さらに、業界動向などの情報を収集し、以前は不採用としたイシューが現在適切であるかを再検討し、業務タスクに反映させます。また、上長に相談し、論理的な考えができているかフィードバックをもらうよう心がけています。 業務の方向性はどう深める? 日々の業務をピラミッドストラクチャーで分解し、その変化に応じてイシューを見直すことから始めています。上長とこのピラミッドストラクチャーを共有し、議論を通じて業務の方向性を組織全体で深めるよう取り組んでいます。

アカウンティング入門

P/Lが明かす企業成長の秘密

P/Lで儲けはどう見える? P/Lの構成から、企業の儲けの構造がどのように形成されるかを理解できました。事業コンセプトや経営ポリシーがP/L上に表れる点も興味深いと感じました。客回転数や客単価、材料費と売上総利益、販管費など、それぞれの項目にどのように影響があるのかがよく示されています。 講座の魅力は何? この講座は、アカウンティングの内容ながらマーケティングのような切り口も取り入れており、非常に刺激的でした。 経営分析はどう進む? 今後、企業の経営分析にこの知識を活用していきたいと考えています。業界内での相対比較に着目し、同じ市場内の自社、パートナー企業、クライアント企業、競合企業といった立場で比較しやすい指標を検討する予定です。また、過去3年から5年の推移を分析することで、変化点やその要因を把握できればと考えています。 比較で差は何? 具体的には、まず関心のある業界に焦点を当て、代表的な3社のP/Lを比較して各社の儲けの構造の違いを読み取ります。その後、決算報告資料を参照して各社の主張を確認し、さらに関連するメディアの記事を通じて有識者の評価なども調査していく予定です。

クリティカルシンキング入門

データ分類で在庫管理を効率化する方法

実践で見えた真実は? 学んだこととして、まずは実際に手を動かし、様々な切り口でデータを分類してみることの重要性がありました。その際、5W1Hといった手法を活用しつつ、単純に機械的に分けるのではなく、どのように分ければ意味が出てくるかを考え、仮説を立てることが大切だと理解しました。仮説を立てることで傾向を捉えることができますが、その傾向だけにとらわれず、他に絶対的な傾向はないのかをさらに異なる視点から分析することも重要です。 在庫管理に活かす? 自分の業務では、販売会社の在庫や売上の管理にこのアプローチが役立つと感じました。具体的には、在庫が増える要因や売上が変動する要因の分析に応用できると考えています。例えば、在庫削減の計画を検討する場合、在庫増加の原因を詳細に分析することが、具体的な対策につながると考えています。 売上計画はどうなる? 私が担当している地域では、計画通りに販売が進まないことで在庫が増えているという現状の課題があります。その打開策を考えるために、どの商品がどの顧客先で計画と実績に差が出ているのかを分析し、問題を特定したいと思っています。

データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

クリティカルシンキング入門

分析の視点が変える売上の未来

情報をどう分解? 数字の見方や分け方を工夫することで、異なる分析結果が導き出されたり、隠れていた情報が見えてくることがあります。情報を正確に分解するための手法として、MECE(Mutually Exclusive, Collectively Exhaustive)という考え方があります。情報を層別、変数、プロセスなどの視点から漏れなくダブりなく分解することで、新たな洞察を得ることができます。 売上分析はどう? この方法は販売関連の数値分析においても非常に有用です。例えば、製品の売上分析を行う際には、売上高を売上別、業種別、チャネル別、機能別といった多様な視点で分析することが可能です。これにより、情報の分解や視点の変化が分析に役立つと感じました。 原因分析はどう? 今後、売上情報を分析する際には、MECEを常に意識し、情報の切り方によって得られる洞察の違いを意識しつつ業務を遂行していきます。特に、売上が下がっている場合、その原因を分析する際には、どのポイントに課題があるのかを細かく見つめ、解決策を模索する努力をしていきたいと思います。

「分析 × 売上」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right