データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

クリティカルシンキング入門

見れば納得!視覚化の魔法

視覚化の効果は? 伝えたいメッセージを効率的かつ正確に伝えるため、視覚化のポイントについて学びました。図、表、グラフを活用することで、受け手が眼で情報を確認し、二次元的に処理できる点が理解促進につながると実感しました。 グラフの見せ方は? 具体的には、グラフを効果的に使い、見せ方にも工夫を加えることで全体の流れとメッセージの整合性を図る方法を学びました。スライドでは、相手に情報を探させることなく、流れに沿って情報を提示できるよう心がけることが大切だと感じました。また、グラフは全体像の把握に役立つように配置し、時系列データなどは折れ線グラフ、異なる要素を示す場合は横棒グラフを使用するなど、状況に応じた種類の使い分けが有効です。 グラフ統合は可能? さらに、例えばX軸が共通のグラフが2つ必要な場合には、Y軸を左右に分けて折れ線グラフと棒グラフを1つにまとめるという手法も有用です。タイトルや単位の明示、フォントや色の使い分け、斜体・下線・太文字などを適切に活用することで、伝えたいメッセージに合わせた表現が可能となります。装飾も必要性を考慮し、過剰にならないようバランスを取りながら資料作成に取り組むことが求められます。 情報伝達はどう? これらの視覚化テクニックは、経営会議や上位への発信資料にも大変役立ちます。受け手が持つ情報との違いを考慮し、短い時間で効率的にメッセージを伝え、相手に理解してもらうために、今回学んだポイントを資料に盛り込むことが重要です。 伝わる資料とは? 最終的に、読み手の立場に立って資料を構成し、情報の配置や流れを工夫することで、本当に伝えたい内容が正しく伝わる資料作成を目指していきたいと感じました。

戦略思考入門

効率化と収益アップを目指す視点の磨き方

材料費はどう見直す? 規模の経済性について、自社の商品製造におけるコスト削減が課題として浮上しました。材料費を削減するためには、大量の材料を購入しなければならず、その量は50年分にまで及びます。もし使い切れなければ廃棄することになり、また使用可能でも品質のために独自の基準で支障が出るという話を、学習の当日に自社内で聞き、大変驚きました。購入時のコストのみに目を向けるのではなく、材料の保管や廃棄にかかるコストもトータルで判断する必要性を強く感じました。 多角化は収益貢献? また、範囲の経済性に関しては、多角化を進めるにあたって本当に収益に貢献するのかを考慮する視点が大切であることを再確認しました。 実践はどう進む? 総合演習では、全体的な視野で事例を検討する機会がありました。これまで学んだ知識を活かしつつ、足りない情報も収集し予測を立てるという、実践的な演習となりました。特に人件費や燃料費、現在の人口動態など多岐にわたる情報を取り入れた視点で学ぶことができました。 最適策は見つかる? 収益向上の観点から見ると、材料の購入方法や発注単位についても、他部門のことであっても自分のこととして考えられるようになった気がします。効率的に業務を進めるための最適なアプローチを発見する視点を持つことができたと思います。 業務判断は合ってる? 自分の部署では業務管理を通じて収益アップを目指しています。そのため、一つ一つの業務判断が本当に効率化と収益につながるのかを精査していきたいと思っています。こうした視点を持つには経験が必要かもしれませんが、見るべきポイントを自分なりに絞って、業務の見直しを図りたいと考えました。

戦略思考入門

フレームワークで拓く新たな視点

背景はどう思う? 意見の背景にある事情を踏まえて考察することで、市場環境の変化、顧客要望、自社の課題など、3Cの骨格がより明確に見えてきました。これまで漠然と感じていたフレームワークが、意識して活用することで分析の解像度を高めることができたと感じています。 分析方法は何? 広い状況把握には、PEST、3C、SWOT、バリューチェーンといったフレームワークが非常に有効です。得意先の現状分析にはPESTを用い、相手が置かれている環境や抱える課題を正確に読み解くことが可能となります。また、自社は3Cを活用して市場環境や取引先のニーズ、競合との比較を行い、強みと弱みを把握してより的確な提案に繋げていく意向です。さらに、SWOT分析を通じて、表面的な強みに留まっていた自社の良さを改めて具体的に捉えることができるようになりました。 連携はどう取る? バリューチェーンについては、今回初めて学びました。これまで、所属部署内での状況把握に注力していたため、他部署との連携や大規模なプロジェクトに取り組む際には、バリューチェーンを活用して内部状況を正確に把握し、できることとできないことの判断、リソースの効率的活用、そして納期の正確な実現を目指したいと考えています。 活用はどう進む? 今後は、フレームワークを確実に記憶に定着させ、業務のあらゆる場面で即座に活用できる体制を整えようと思います。具体的には、学んだ内容を記載したメモを毎朝のリマインダーに設定し、日々使用するアプリにもフレームワークの内容を記録します。さらに、業務で利用する際にはチームメンバーと共有して共に考える時間を設け、実践での活用を深めていきたいと感じています。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

クリティカルシンキング入門

学びの振り返りが未来を変える理由

目的を意識するためには? 目的を意識して考えること、考え方の前提の違いを意識すること、そして継続して考えることが大切です。 情報をどう整理する? 情報を分けて考え、漏れなくダブりなく、工程別に整理することが求められます。目的を伝えた後に説明を行い、ピラミッドストラクチャーで考えをまとめ、チェックすることも重要です。 メッセージを強調するには? 伝えたいメッセージを意識することも忘れてはいけません。タイトルや単位、目的に合ったグラフを使用し、メッセージを強調することが効果的です。文章であれば、伝えたいメッセージの前後に強調する言葉を追加し、グラフであれば矢印を追加するなどの工夫をします。文章の場合はフォントや色、下線、斜体を使って強調することも可能です。 具体的な要素をどう活かす? 文章で情報を伝える際には、興味や目新しさを取り入れ、特定の要素に注目して構成することで、印象に残るようにします。事実とイメージを具体的に書き、抽象的な言葉を避けることで解釈の違いを防ぎましょう。 情報の受け渡しを最適化するには? 情報の受け渡し時には、目的を意識し、前提の違いに配慮しつつ、継続して考え続けることが必要です。情報をまとめて伝える際は、まず目的を明確にし、その後に学んだことを活用していきます。 情報を正確に受け取るためには? 情報を受け取る際には、質問をしてズレがないかを確認し、言い換えて伝え问题ないかを確認することも大切です。情報を受け取る人のことを考え、何を求めているか、どのような考え方をするか、達成したい目的は何かを意識して、学んだ内容を活用していきたいと思います。

デザイン思考入門

お客様の声で磨く共感営業術

実体験の壁は何? 営業担当としての立場から、商品の用途上、実際に使用して体験することが難しいためユーザー目線での「共感」を得るのが困難だと感じています。そこで、顧客訪問時の工場見学や商談中のフィードバックを大切にすることが、共感に繋がると考え、今後も顧客訪問を重視していきたいと思います。 感情はどう拾い上げ? 具体的には、現行製品を採用した背景や使用感について詳しくヒアリングし、困っている点に共感できる情報を探ります。また、工場の視察や作業の観察を通じてお客様の感情にも目を向け、課題の発見に努めたいと考えております。こうした取り組みを通して、お客様の思考構造を深く理解し、共感へと繋げたいと思います。 品質トラブルはどう? 粉体塗料の営業活動においては、塗装ムラやハジキなどの不良が発生した際に、前処理の状況や塗装作業方法の見直しが必要との声を多く伺います。また、企業全体では環境対応が重視される一方で、現場ではコスト増加に悩む意見もあります。このような現場の声から、不良発生が少ない安定した製品の提供と、製品の価値を経営視点と現場との間で適切に連携させる必要性を改めて感じました。 共感の鍵は何? 講義では実体験を通じたユーザーとの共感が中心に取り上げられていましたが、営業職としては、お客様の思考構造を理解することが共感形成の鍵だと実感しました。粉体塗料のように使用体験が難しい商材の場合、相手の立場や判断の背景を把握することが、共感への第一歩になると考えます。今後は、様々な方法を状況に応じて使い分けながら、顧客への共感を実践していきたいと思います。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

データ・アナリティクス入門

ロジックツリー活用でKPI改善を目指す!

ロジックツリーって何? ロジックツリーの使用方法について新しい発見がありました。ロジックツリーには、変数分解に加えて「層別分解」という使い方があるのです。層別分解は、全体を複数の部分に分けて同じ次元で揃える方法で、それぞれの階層の下には同じ要素が並ぶイメージです。一方で変数分解は、要素の掛け算を分解し、原因を特定するのに役立ちます。これらの手法を試行することにより、より包括的で明確な分析が可能になります。 営業支援機能はどう? R&D部門における営業支援機能のひとつとして、顧客向けPoCの作成や自社商材のクロスセル・アップセルの立案があります。しかし、これらの活動においてチームのKPI進捗率に大きな差が見られます。そこで、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することが重要です。一連の要素には、要素A→B→C→PoC作成→D→E→クロスセルなどがあります。 KPI設定は見直す? 目的は、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することです。このために、まず関係者とブレストを行い、現在の管理状況に関わらず関連しそうな要素のアイデア出しを行います。その後、出てきたアイデアを元に、現在のKPI設定が定量的かどうか、またMECE(Mutually Exclusive and Collectively Exhaustive)であるかを検討します。このプロセスの中でロジックツリーを使用し、特に不慣れな現在は層別分解と変数分解の両方を試し、それぞれの使用感をメモしておくことが有効です。

戦略思考入門

営業から学ぶ効果的な組織改革の道

売上での判断は正しい? 営業を担当していたときには、クライアントの優先順位を売上だけで判断していました。しかし、リソースの使用状況や応諾率の可能性、利益額といった観点を考慮していなかったことに気付きました。 リソースは足りるか? 現在、私はエデュケーションチームのリーダーとして活動していますが、組織には大きな課題が存在しています。この課題に対して適切な対応策を打つためには、今のリソースだけで足りるのか、何を捨ててでも取り組むべきなのかを議論する必要がありました。そこで、売上インパクト、応諾率、効果、リソースの使用、実行可能性、利益額といった観点でタスクの見直しが重要だと感じています. 育成課題はどこ? 現在のミッションは営業人材育成に特化していますが、より広い視野で階層別に考えを発展させるべきです。業績向上のために必要な人材像が現状どうなっているのかを分析し、育成の課題を知識、テクニカルスキル、ポータブルスキル、マインド、スタンスのどの部分にあるのかを特定することが求められます。そして、不要なタスクを捨て、優先すべき点を明確にすることで、限られたリソースの中で最大の効果を出す方法を模索したいです. 理想組織の実現は? 経営戦略の実現に必要な組織像を定量的および定性的に確認し、理想の組織における管理職やメンバーのあるべき人材像も同様に評価します。現状の組織と人材の状況を、業績などの定量軸とES調査などの定性軸で確認します。理想と現状のギャップを整理し、課題に対する改善策を考える際には、やめるべきタスクと併せて施策を立案することが必要です.

デザイン思考入門

生成AIで顧客共感の新境地

どうしてペルソナが鍵? 生成AIのビジネス活用支援の立場から、生成AIの利用方法について考えました。自ら生成AIをどのように活用するかを検討し、実際の運用で示された課題を把握することは可能です。しかし、利用するお客様ごとに使用シーンや前提知識、目的が異なるため、彼らに共感し課題を正しく理解するには、ペルソナをしっかり定義し、その前提条件や目的、状況を想像して整理する必要があります。 顧客役割シミュレーションは? また、生成AIに顧客の役割を模倣してシミュレーションしてもらう手法も有効だと考えます。ペルソナで定義したユーザーとして課題を提示してもらうことで、要件定義のプロセスに新たな視点を加えることができるため、実践的な検討に大変役立ちました。 利用後の効果は何? 実際に利用してみると、生成AIからユーザー役として現実に即した質問が提起され、単なる想像にとどまらない網羅的な事前検討ができることが確認されました。従来、ユーザーを実際に巻き込む場合、コストがかかるという課題がありましたが、生成AIを用いることで低コストで実務に近いシミュレーションが可能となり、非常に参考になりました。 今後の展望はどう? 今後は、生成AIを活用してより具体的なユーザー視点からの課題提起やシミュレーションを実践し、顧客との共感を深める戦略に活かしていきたいと考えています。さらに、生成AIを使うことでペルソナの理解がどのように進むか、またそのシミュレーション結果をどのようにビジネス戦略に反映させるかについても、今後の課題として具体的に検討していく所存です。
AIコーチング導線バナー

「方法 × 使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right