リーダーシップ・キャリアビジョン入門

言葉が拓くリーダーの道

どう評価伝える? 部下がいないため、これまで評価を伝える経験や伝えられる経験がありませんでした。特に、どのタイミングで結論を伝えるかという点が難しく感じられました。最初に結論を述べる方法と最後に述べる方法にはそれぞれメリットとデメリットがあり、キャリアアンカーで学んだように、受け手の価値観を十分に理解した上で伝える順序を決めることが重要だと結論付けました。 どうして具体化できた? ありたい姿に関しては、大きな変化はありませんでしたが、これまでの学びでより具体的なイメージができるようになりました。たとえば、私自身が「信頼・挑戦・感謝」を行動指針として掲げている中で、感謝の意味を単なる言葉としてだけでなく、「当事者意識」や「適切な言葉選び」といった具体的な行動に落とし込む意識が芽生えました。特に振り返りの機会に、言葉選びの重要性に改めて気づくことができました。 リーダー像はどう見える? リーダーとしての全体像を考えるうえで、パス・ゴール理論が非常に腑に落ちました。これにより、何をすべきかが明確になり、基本を押さえながらも独自の視点を取り入れていく意欲が湧いてきました。 どう背景を探る? クライアントとの1on1では、進捗管理だけでなく、その背景や理由についても質問するよう心がけています。数字だけで評価するのではなく、その裏にある要素を引き出し、より深い理解に繋げたいと考えています。行動指針を具体的に意識することで、自分の行動が常にその指針と照らし合わせながら進むように努めています。 どうして仮説組む? 質問する際は、ただ問いかけるのではなく、仮説を持ったうえで行うことが重要です。まずは当事者意識をもって仮説を立て、その仮説に基づいて相手の立場や状況を考えながら会話を進めるよう、日々意識していきます。質問力と傾聴力をさらに磨くため、今後も努力していきたいと考えています。

データ・アナリティクス入門

フレームワークで拓く学びの未来

3Cと4Pで何を探る? フレームワークの各視点を用いて仮説の可能性を広く検討することは非常に重要です。3C分析では、市場・顧客、競合、自社の観点から、誰が顧客であるか、市場の伸縮、競合の存在やその強さ、自社がどのようなサービスを提供し顧客のニーズを満たしているかを考察します。同様に、4P分析では製品、価格、場所、プロモーションの各要素に注目し、製品やサービスの質、価格設定、提供方法、そして効果的な販促方法について検討します。 戦略はどう立てる? フレームワークを用いて仮説を幅広く検討する姿勢は良好であり、各視点で具体的な議論に進めば理解がより深まります。例えば、3C分析から得られた仮説を基に具体的な戦略をどのように立案するか、4Pの各要素がどのように互いに影響しあっているかを考えることが課題となります。 事例分析は効果ある? ビジネスケースに実際にフレームワークを適用し、その有効性を確認することもおすすめです。引き続き学習を進めながら、現実の事例に即した検討をしてみてください。 医療M&Aの今後は? また、医療系M&A市場については、中小規模医療機関の承継ニーズの増大や医療費抑制政策の影響により、今後も活発な動きが予測されます。一方、競争の激化や規制リスクも存在するため、専門性の向上、デジタルトランスフォーメーションの推進、さらには事業領域の拡大が求められます。 AI・DXでどう変える? 具体的には、3C分析から得られた仮説をさらに充実させ、週次のミーティングで戦略の検討を行うことが考えられます。また、4Pの観点からAIを活用した企業価値評価による業務の効率化や情報発信の強化も有効です。加えて、DXの活用によるマッチング効率の向上、事業領域拡大に向けた人材育成と確保、さらには医療費抑制政策や規制強化への迅速で正確な情報収集の自動化も検討すべき課題と言えます。

デザイン思考入門

対話で見つける本質のヒント

対話で課題は明確? 事業開発や組織開発のコンサルティングを通じ、クライアントとの対話を重ねながら課題整理と解決策の提案に取り組んでいます。クライアント自身が認識している課題の背後にある本質的な問題を引き出す点について、まだ改善の余地があると感じています。表面的な言葉に頼りすぎると根本的な課題が見落とされることや、既存のフレームワークに依存することで柔軟な思考が制約される場合もあると実感しました。また、クライアントの独自の組織文化や意思決定の仕組みにより、提案した施策が実行に移されにくいという状況も認識しています。 新たなアプローチは? 対話を通して課題を整理し、本質に迫ろうとする姿勢は評価に値します。今後は、既存の枠組みから一歩踏み出し、自由な発想を取り入れることで、より深い洞察を得るための新たなアプローチや質問方法を模索したいと考えています。クライアントの組織文化に合わせた提案を行うには、状況に応じた工夫が一層重要となると感じます。 実行策はどう進む? 理想的な状態として、クライアントの表面的な課題だけでなく、その背景にある本質的な問題を整理し、実行しやすい施策を提示することの大切さを再認識しました。デザイン思考の「共感」を深めるとともに、クライアントの視点で課題を定義する力を高めることを目指すとともに、柔軟な思考を実現するために、状況に応じたフレームワークも効果的に活用できるよう努めたいと考えています。 何が本当の問題? 課題定義のプロセスにおいて、何が本当の問題なのかを見極めることの重要性を改めて実感しました。クライアントの発言をそのまま整理するのではなく、その背景にある思考や感情、組織の制約を深く理解しながら、適切な問いを立てることこそが真の課題解決につながると感じています。今後もこれらの視点を大切にし、より本質的な課題解決を目指して取り組んでいきたいです。

クリティカルシンキング入門

視点を広げる思考の旅

思考の偏りはどう感じ? 自分の思考力の偏りや視点の狭さを認識する良い機会となりました。これまでの仕事では、経験と直感に頼った判断をしていることに課題を感じていたため、今後は目的志向を持ち、意識的に考える習慣を身につけたいと思います。 客観視点の価値は? また、経験に基づいた客観的な視点の重要性も認識しました。今後は判断や部下指導においてこの視点を活かし、施策を進める際は個別の経験に依存せず、全体を俯瞰して検討することを心がけます。各段階で「この判断が組織全体の目標達成にどう寄与するのか」を確認しながら、戦略的なアプローチを目指していきたいと思います。 部下指導はどう変える? 部下の指導においても、経験則にとどまらないアドバイスを心がけ、部下自身が目指す成果や目標を見据えた指導を続けていきたいです。部下が自身の視点や思考の幅を広げられるよう、思考の枠組みや視座を意識的に変えるよう促し、短絡的な判断ではなく、多面的な視点から判断できる力を育むサポートを行っていければと考えています。 提案の本質はどう? 具体的には、部下の提案や施策の判断において「具体」と「抽象」を行き来することを意識し、提案の本質を理解することから始めます。提案がどのように組織の目標に寄与するのかを確認し、短期的な成果だけでなく長期的視点からも効果を評価します。 視点を広げるには? さらに、提案内容を複数の視点から構造化し、異なるアプローチを考慮します。他の方法や視点がないか、提案が本当に必要な施策であるかなどを批判的に検討し、最良の選択肢を見極める姿勢を持ちます。 最終判断は何を重視? 最終的な判断を行う際には、他部署や異なる業務領域からの視点も取り入れ、多面的な評価ができるよう努めます。こうした取り組みにより、客観的かつ全体的な視野を持って判断できるようにしていきたいと思っています。

クリティカルシンキング入門

ピラミッド構造で学ぶ伝える力

効果的な伝達方法とは? 物事を相手に伝えるためには、以下の要素が重要です。具体的な情景を切り取り、前後の状況を説明し、お互いの考えや状況を的確な言葉で表現することです。これを実現するためには、日本語の正確な使用と、文章を俯瞰して評価する視点が必要となります。しかし、自分の文章を客観的にチェックすることは難しいものです。そこで「ピラミッド・ストラクチャー」というツールを活用するのが有効です。 ピラミッド・ストラクチャーはなぜ有効? ピラミッド・ストラクチャーは、メインメッセージから始まり、キーメッセージやその具体的な根拠を下位に配置することで、論理をピラミッド型に構築します。この方法を使うことにより、作成者自身が論理の妥当性を容易に確認でき、聞き手もどのような理論に基づいて結論が導き出されたかを理解しやすくなります。 報告や提案で気をつけるポイント 特に上司への報告や顧客への提案・交渉の際には活用していきたいと考えています。具体的には、正しい日本語であることに加え、冗長にならないように注意し、ピラミッド・ストラクチャーに基づいてメインメッセージとキーメッセージを明確にすることが求められます。日本語の使用(例えば、助詞や主語・述語、能動態・受動態)について、さらに注意を払う必要があると再認識しました。 MECEを活かしたキーメッセージ構築 また、ピラミッド・ストラクチャーを作成する際には「MECE」(Mutually Exclusive, Collectively Exhaustive)も意識してキーメッセージを組み立てることが重要であると気づきました。報告の際には、事前にピラミッド・ストラクチャーで内容を整理し、対処したいと考えています。また、部下への人事評価のフィードバックにおいても、メインメッセージやキーメッセージを事前に設定した上で対応していきたいです。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

データ・アナリティクス入門

分解と検証で明かす解決のヒント

どこに問題潜む? 問題の原因を探るためには、まずプロセスを段階ごとに分解するアプローチが有効です。これにより、どの段階に問題が潜んでいるのかを明確にできます。同時に、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが重要です。決め打ちせず、判断基準の重要度に基づく重み付けを行いながら評価する方法がおすすめです。 条件は整ってる? A/Bテストにおいては、それぞれの施策を比較・評価する際、できる限り条件を揃えることが求められます。 どうやって精度向上? また、ステップを踏んでデータ分析を行うことで、問題解決の精度を高めることができます。ある程度有望な仮説が立てられたら、まずは実行し、実際の市場や顧客の反応をもとにデータを収集して検証を重ねる方法が効果的です。 どこで・なぜ・どうやる? 自分の身の周りでデータ分析のトレーニングをする際は、まず「どこで(Where)」問題が発生しているのか把握し、次に「なぜ(Why)」その仮説が成り立つのかを立て、最後に「どのように(How)」打ち手の有効性を検証するプロセスが役立ちます。 どちらが響く? プロモーション活動のマネジメント業務において、インターネットを介した施策が難しい場合でも、どのパッケージが顧客に響くのかを検証する観点で実施することが可能です。例えば、協調すべき訴求ポイントをAパターンとBパターンで打ち出し、どちらがより顧客の反応を捉えられるかを分析・検証します。まずは、AパターンとBパターンそれぞれのアクションプランを策定しチームで共有し、条件をできる限り揃えられるよう協議します。その上で、予測されるボトルネックを洗い出し検証を進め、アクションが決まれば早速実行し、仮説検証を繰り返すことで問題解決へと結び付けていきます。

マーケティング入門

自社サービスの新たな可能性探索

ビジネスチャンスをどう生み出す? 同じ商品であっても、誰に売るか、どこで売るかによってビジネスチャンスが生まれることを理解しました。ポジショニング、つまりどのお客様にどのように売ることで市場を作れるかを意識することは、自社製品の強みを再考する上で必要だと感じます。その際、多くの強みをアピールしたくなりますが、二軸(例えば機能性と価格)を意識し整理することで、それぞれの強みを際立たせることができると考えます。 セブンカフェの成功要因は? 特に、例えばセブンカフェは「手軽で安価」という二軸で顧客ニーズを捉え、新たな市場を開拓しました。これにより、サラリーマンやOLがランチ時間帯に手に取りやすい商品が提供され、新たな顧客層が生まれたのではないでしょうか。 自社プロモーションの考え方 業界全体としても、誰向けに何を訴求しているのかを意識して、他社のプロモーションなどを観察していきたいと考えています。そして、その結果としてどのような顧客層に訴求が成功しているのかを、できる限り情報収集したいです。 高年齢層をどうターゲットに? 自社サービスに関しては、高年齢層と高収入層を主なターゲットとしています。このため、法令などの制約を考えつつ、新たな利用方法の切り口を示し、家族でお金の利用方法について考える機会を提供するなどのプロモーションを検討したいです。 日々の観察で何を見つける? 普段はあまり意識していませんが、金融機関やウェブ広告、さらにはコンビニやドラッグストアにおいてもポジショニングと二軸の価値を意識して観察してみることも重要だと感じています。また、自社や自社サービスの強みについても再評価してみたいと思います。日々の生活の中で、自社サービス利用者の行動を想像しながら過ごすことも試みたいです。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

「方法 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right