クリティカルシンキング入門

多角的視点で売上アップを実感!

問題解決のための分析方法は? 状況を正しく把握して行動を判断するためには、問題をより細かく分解し、複数の視点からデータを収集し整理することが重要であると学びました。データをまとめ、仮説を立てた後は、さらに新しいデータを集めてその仮説の真偽を再検討します。このプロセスを通じて、状況を正確に捉えることができると理解しました。 自店舗の分析をどう深める? 現在、各部門や各商品の販売数、実利益、前年対比、予算、目標設定を行っていますが、これを自店舗のみならず、エリア内の他店舗のトレンドや市場トレンドと照らし合わせています。これまでもこのような分析を無意識に行っていましたが、今回の学びを通じて、それが複数の視点による分解であったことに気付きました。 他店舗の成功事例をどう活用する? エリア内の他店舗にも連絡を取り、自店舗の特徴を聞き出しています。特定の部門や商品の売上が高い店舗の特徴や取り組みをヒアリングし、それを自店舗にフィードバックすることで売上向上を図っています。

クリティカルシンキング入門

論理で拓く成長の道

なぜ系統分解する? 問題解決にあたっては、主観的な判断を極力排除し、各要素を系統的に分解する手法が重要であると学びました。MECEの考え方を参考に、まずはトレーニングを重ねながら、必要な要素を網羅的に整理する力を身につけたいと考えています。 どの角度で検証する? また、IT分野でのシステム設計や事後分析においては、目的や問題点を明確にし、多角的に分析する姿勢が求められると感じました。どの角度から、どのレベルまで検討するかを意識することで、より高い品質のアウトプットを実現できると実感しています。さらに、クリティカルシンキングの向上には継続的なトレーニングが不可欠であり、ビジネスシーンにおいても振り返りの時間を大切にすべきだと思いました。 自己評価はどう? 今後は、本コースで学んだ思考方法を活かし、過去の問題分析を振り返る中で、自分のアプローチが主観的になっていないか、また適切なレベルまで検証できたかを再評価し、次回以降のタスクに役立てていきたいと考えています。

デザイン思考入門

古今を繋ぐひらめき学習

日常で使う発想法は? ブレンストーミングやKJ法は、ほぼ無意識のうちに日常で活用していると感じます。一方で、SCAMPER法は6つの展開視点を覚えるのが難しく、特定のワークに取り入れると効果的だと思いました。特に、6つの展開事例を直感的に理解できると、より実践的な方法が見つかりそうです。 江戸時代の知恵はどう活かす? また、SCAMPER法を考える中で、江戸時代に使用されていた「網袋」を思い出しました。網状の紐で持ち運び用に工夫された手法は、現代ではバックパック以外の荷物整理のアイデアとして参考になるのではないかと考えます。さらに、KJ法によるアイデアの分類やダブルダイヤモンドを用いた発想展開では、「抽象と具体」を意識して階層化することで、アイデア間のつながりが見えやすくなると感じています。具体的なアイデアが数多くあっても、その積み重ねが抽象度の高いテーマを生み出し、いわゆるコンセプトピラミッドを形成するのが重要だと思います。

クリティカルシンキング入門

エクセル不要!説得力を鍛える会議術

なぜWHYが不可欠? 学びには大きく二つの要点があります。一つ目は「WHY」の重要性です。結論だけを伝えても相手が納得しづらく、主張が成り立たなくなってしまうからです。二つ目は、結論と根拠に一貫性を持たせることの重要性です。少しでも違和感があると、相手に疑問が残り、納得させることが難しくなります。 なぜ根拠を使い分ける? 上司と部下の間では、結論を支える根拠を使い分けることが必要であると感じました。特に上層部との会議では、意見を主張する際に実現可能性の高い根拠を説得材料として使っていきたいと考えています。特に数字やデータ、実績を用いた説得方法に注意を払いたいです。 どう主張を組み立てる? 最初はピラミッドストラクチャーをエクセルで作り、会議の際にはそれを使って自分の主張を考える方法を反復して行い、習慣化します。その後、エクセルを使わずに頭の中で主張を構築する練習を行い、スムーズにアウトプットできるようにしていきます。

データ・アナリティクス入門

データ分析で気づく改善の一歩

データ分析ってなぜ? 全体を通してデータを分析する重要性を改めて実感しました。今まであまり意識していなかったMECEの考え方―漏れや不足がない状態―について、比較の段階があることやそれぞれの段階で分かる情報の違い、そして明確な発見があるという点が印象に残りました。 着地見込みの工夫は? また、着地見込みを作成する際、単価を中央値で表示するなど細かい部分にも応用できる点を体験でき、シミュレーションに積極的に取り入れていきたいと感じました。今後は、シミュレーション結果や予算、実績とのGAP分析にもこれらの方法を活用し、より精度の高い検討を行いたいと思います。 GAP検証で何が起こる? さらに、シミュレーション実績との比較をもとにGAPの仮説検証を実施し、次の期には軌道修正が図れるよう動いていく予定です。まずは表やグラフを作成して比較し、そこから差異分析を行って仮説を立て、改善に結びつけていきたいと考えています。

データ・アナリティクス入門

マイナスからプラスへ!学びの進化

手順の共有の意味は? 実務の中で、手順やロジックを言語化することが、他者との共通理解を深める上で大いに役立つと感じました。抽象度の高い課題を、what、why、howのステップを踏んで具体的な対策へ落とし込むプロセスは、非常に有効です。 どんな課題に挑む? 現在、私は「マイナスからゼロへ」そして「ゼロからプラスへ」という二つの課題に取り組んでいます。チーム内の共通理解を促進するため、整理した論点に今回学んだ方法論を適用し、共有することに力を入れています。 経験から得る信頼は? また、私は転職経験があり、外部の常識や経験を活かして自社の課題を指摘しています。しかし、その指摘ポイントが十分に共有されていない状況です。論点を一つ一つ明確に示し、なぜその取り組みが必要なのか、背景や問題点を含めたたたき台として解決策を提示することで、共通認識をより強固なものにしなければならないと感じています。

クリティカルシンキング入門

まずは最優先から!課題解決術

イシューって何? イシュー(最優先課題)の特定と、その課題に対する対策から次のイシューを明らかにし、順次対策するというプロセスを学びました。この方法により、効率的かつ効果的な課題解決が可能であることを理解しました。 優先順位はどうなる? 一方で、事実を多角的に捉え課題を洗い出す際に、何を最優先に解決すべきか見極めるのは容易ではないと感じました。 目標達成の秘訣は? たとえば、担当部署の予算目標に対して実績が追いつかない状況では、様々な要因が絡み合っている中で、目標達成のためにまず最優先すべき課題を明確にすることが、効果的な対策の立案につながると実感しました。 次は何をすべき? 今後は、課題の洗い出し、詳細な分析、優先順位の整理を常に意識しながら、優先度の高いイシューから順に対策を講じ、その結果をもとに次の課題を把握し対処するというサイクルを継続していきたいと考えます。

データ・アナリティクス入門

フレームワークで開く学びの扉

仮説はどう生まれる? まずは、3Cや4Pといったフレームワークを仮説の軸として活用することで、仮説をスムーズに構築できます。この方法により、偏った仮説や考慮漏れを防ぎ、網羅的かつ精度の高い分析が行えると感じています。 私の仮説偏りはなぜ? また、私自身、問題解決のための仮説設定が思いつきやすいものに偏りがちであることを実感しています。そこで、今後はまず3Cや4Pなどの軸に基づいて仮説を網羅的に洗い出す手順に見直すことにしました。これにより、より体系的かつ客観的なアプローチが可能になり、問題解決の効率も向上すると考えています。 実践はどう進む? 具体的には、最初に3Cや4Pを活用して課題に対する多角的な視点を整理し、次に各軸に沿って仮説をリストアップ、優先順位を付けながら検証を進めます。最後に、検証結果をフィードバックし、再度仮説を見直していくプロセスを実践していく予定です。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

原因追求で成果を最大化する方法

分析フレームワークの活用法 分析手法として「What, Where, Why, How」というフレームワークを用いることは非常に参考になりました。つい「How」にばかり注目しがちですが、まずは現状と理想とのギャップを明確にし、周囲との合意を形成しながら進めることが重要だと感じました。 売上未達の原因特定と対策 売上未達の要因を特定し、対策を考える際にも役立ちそうです。これまでは経験や勘に頼りがちでしたが、このフレームワークを行き来しつつ、効果的な打ち手を模索したいと思います。 問題の本質を探るためには? まずはMECEに基づいて、あらゆる要因を考慮しながら問題の本質を探りたいと考えています。また、問題の特定や仮説に関しては、他のチームメンバーと意見交換を行い、精度の高い取り組みとなるよう努めたいと思います。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

「高い × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right