クリティカルシンキング入門

エクセルで広がる!学びの新発見

エクセルとグラフの効果は? エクセルシートの活用方法について学んだことは、非常に奥が深く、多くの発見がありました。特に、データの見える化をグラフで実現することは非常に参考になりました。また、データ分析で迷ったときには、まずはデータを分解してみることが重要であるという点も、教材を通じて反省しました。後半のMECEに関する学びでは、経営戦略のツールとしての利用に関して、どのステップで役立つのか、構成要素を分解して考える視点が大変有益でした。 分析視点の工夫は? これらの学びを基に、大学の在学生や入学生の分析に活用してみたいと考えています。特に、入試ごとの分析視点が不十分であったため、同僚とともにいくつかの切り口を考え、層別や変数の分解を試みるつもりです。また、プロセスを分解し、ペルソナを設定することで、大学進学を考えた段階から最終的な進路決定に至るまでの過程の分析を試みたいです。 広報と全体の関係は? さらに、「全体を定義する」ということの重要性についても意識が深まりました。これまでは、学生がオープンキャンパスに参加し、その後出願するという単純な流れを考えていましたが、実際には学生が興味を持ち始めるタイミングで、どのように大学の認知度や魅力を伝えるかが重要だと感じました。そのため、進学先を決定するプロセスにおける効果的な広報活動の必要性を強く感じています。

クリティカルシンキング入門

日本語力アップとピラミッド活用術

なぜ印象に残った? 私が特に印象に残った学びは二つあります。 日本語の要点は? 一つ目は、日本語を正しく使うことの重要性です。これまで私は、主語を明確にせず述語もうまく対応させずに説明してきたことを痛感しました。特に「自分がサボった分は、聞いている側がツケを払っている」という講師の説明が心に響きました。今後は、主語と述語がきちんと揃っているかどうかに注意を払いたいと思います。 ピラミッドの秘訣は? もう一つは、ピラミッドストラクチャーの作成方法です。まずメインメッセージを設定した後、それを支える理由づけをまとめ、さらにそれぞれを深掘りしていく流れを理解しました。特に、各レイヤーにおいて情報の粒度を揃えることが重要ですが、これが非常に難しいと感じています。今後はこの点に焦点を当てて学んでいきたいです。 報告の伝え方は? 他部署への報告業務においては、調達コストに関して発生した現象を正しく説明し、ピラミッドストラクチャーを使って要因を明確にし、端的に説明することを心がけます。 新規進行はどう? また、新規プロジェクトの進行では、参加者に対して目的や手段を説明する際、日本語の選び方に注意し、主語と述語を正確に使用します。さまざまな意見をまとめる業務では、ピラミッドストラクチャーを用いることで、多様な意見をグループ化することに努めたいと思います。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

クリティカルシンキング入門

本質的な問いと解決策を見つける方法

問いの立て方で何が変わる? 問いの立て方次第で解決の方向性が変わることを学びました。本質的な問いとそれを解決するための具体的な策についての流れを確認できました。 まず、やみくもに考え始めるのではなく、以下の手順を取ることが重要です: - 問いから始め、問いの形に表現する - 具体的に考える - それを一貫して押さえ続け、イシューを意識し続ける - 周りに共有して方向性を合わせる これらの必要性を確認しました。 イシュー設定が議論を引き締める チームのミーティングでは、イシューを適切に設定せずに話し始めることが多くありました。まずは自分がイシューを設定し、それをメンバーに共有することで、話すべき内容の方向性を合わせた上で議論を進める必要があります。本筋から逸れそうなときは、再度イシューを意識し、話を戻すようにファシリテートすることが重要です。 本質を押さえる方法とは? まずは本質的なイシューが何なのか、様々なケースを確認して勘所を押さえることが大切です。そして、イシューに対する解決策をロジックツリーの形に落とし込むように意識します。頭の中で考えるだけでなく、手を動かして具体化することが求められます。また、チームメンバーにイシュー設定の重要性について話せるようにするために、自分自身が理解を深めていきます。

デザイン思考入門

小さな試作から生まれる大きな共感

共感の大切さは? デザイン思考を学ぶ中で、共感、課題定義、試作、テストのプロセスがとても大切であることを実感しました。特に、自分の業務においては、ホームページの改変や制度改善に際し、企業の方針だけでなく、実際に利用する人の立場から課題を見直し、小さくても早い試作を通じたフィードバックが有効だと感じています。 連携の工夫は? 今回、ホームページ企画の初期段階からデザイン会社へ意向を伝えるアプローチを見直す取り組みを始めました。従来は、前任者がメールや電話でやり取りしていたため、業務の忙しさもあり十分なコミュニケーションが取れず、手戻りが生じることが多かったのですが、プロジェクトメンバー内でチャットツールを活用し、リアルタイムで情報を共有する方法に切り替えました。これを機に、課題定義、試作、振り返りの流れをルーチンとして確立していこうと考えています。 本質問いで成長? デザイン思考は、これまで新規事業のためだけの手法だと思っていた面もありました。しかし、相手の立場や背景を想像し、顕在化していない本質的な問いを設定することで得られる共感は、どんな仕事においても、また日常生活においても必要な人間力を高める効果があると感じました。これからも、仲間と共に仕事を楽しみながら、積極的に活用していきたいと思います.

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

クリティカルシンキング入門

業務成功の鍵はイシューの特定!

イシュー設定の重要性に気づく 業務に取り組む際のイシュー(本質的な問い・課題)を立てる重要性とその方法を理解しました。これまでは業務の本質的な課題を意識することを忘れていましたが、その大切さに改めて気づかされました。また、状況に応じてイシューが変化する可能性があること、一度立てたイシューを継続して意識し続けることの重要性も感じました。 フロー作成時のイシュー特定法 新規業務のフロー作成や既存業務のフロー確認において、まずイシューを特定することに着手します。突発的な業務についても、その場の感情や流れに任せず、必ずイシューを特定するよう努めます。また、状況に応じてイシューが変わる可能性を理解しているため、固定されたルーティン業務でも定期的に振り返り、その業務のイシューを再確認していきます。 議論を活かすために必要なこと 新規業務のフロー作成や既存業務のフロー確認、イレギュラー案件や突発的な依頼、会議など、議論の場においてもイシューを特定し、全員で方向性を共有することで建設的かつ適切な根拠をもとに議論が進みやすくなると感じました。社内アンケート結果をもとに課題を抽出する際にも、まずイシューを特定することを心がけ、その際には過去に学んだピラミッドストラクチャーを活用して根拠が明確になるようにします。

クリティカルシンキング入門

結論から始める伝わる文章術

論理順序はどうする? 文章を書く際には、主語と述語を明確にし、論点を論理的な順序で整理することの重要性を改めて実感しました。まず、最初に伝えたい事柄(結論)を示し、その後に理由や根拠を説明し、具体的な事例で補強することで、読者に誤解なく伝える工夫が必要だと感じます。 報告や連絡はどう伝える? 業務報告や取引先への連絡メールなど、実際のシーンでこの方法を取り入れると、何が求められているのかが明確になり、質問のポイントも正確に理解できるようになります。また、文章作成後に必ず読み返し、主語と述語が不明確になっていないか、論理の流れに問題がないかをチェックする習慣が、正しいコミュニケーションに大いに役立っています。 案内状で伝えるには? さらに、案内状などの手紙を作成する際にも、結論を最初に示し、その後で理由を丁寧に順序立てて説明することで、相手にとって分かりやすい文章を構築できると感じました。急ぎの案件でない場合は、一度時間をおいてから再確認することも、誤解を防ぐための有効な方法だと思います。 学びを今後どう生かす? 以上の学びを実践し、今後も意識的に文章の練習やフィードバックを取り入れることで、より伝わりやすいコミュニケーションを目指していきたいと考えています。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

クリティカルシンキング入門

ナノ単科で見つけた未来のヒント

アイキャッチは有効? 【目を引くキャッチフレーズで印象づける】 資料作成や情報伝達において、まずは冒頭に目を引くアイキャッチを配置することが重要です。これにより、読む人の興味を引き、伝えたいポイントが一目で理解できる構成になります。 視覚表現は伝わる? グラフや図、文字の色、フォントといった視覚要素は、要点をパッと伝えるための有用なツールです。資料全体の構成や内容を整理し、何が一番伝えたいのかを明確に示すことで、相手に情報を探させない資料作成を実現できます。 グラフの使い方は? アンケート収集や実績報告、データを基にした考察の場面では、グラフを用途に合った形で活用することが求められます。色使いは控えめにしつつ、強調すべきポイントが際立つように工夫することが大切です。 文章の見直しは? また、資料や文章は提出前に客観的に見直し、伝えたい内容が確実に伝わるかどうかを確認することが必要です。読み手の視線がどの順序で情報を捉えるかを考慮し、論理的な構造と流れを意識した文章作成を心がけましょう。 強調方法は効果的? このように、シンプルで分かりやすい表現と、効果的な視覚的強調を組み合わせることで、資料の要点がすぐに把握できるコミュニケーションが実現します。

「流れ × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right