クリティカルシンキング入門

問いの一歩で変わる未来

本質の問いは何? まずは、「問い」を立てることから始める重要性を再確認しました。しかし、人の思考には偏りやバイアスがかかりやすいと学んだため、本当に解くべき問いを見極めることが非常に難しいと感じています。そのため、ヒト、モノ、カネといった基本的な要素を理解し、本質的な問いかどうかを判断する視点が大切だと腑に落ちました。また、今の状態がやっとスタートラインに立ったような実感もありました。 問いをどう記録? 問いを立てるだけでなく、それを記録し、共有することも重要であると認識しています。しかし、まずは本当に今考えるべき問いを見極めることが不可欠です。そのため、問いを立てたアウトプットを作成し、他者からのフィードバックを受ける機会を設け、判断力をさらに高めていきたいと考えています。 問いで改善はどう? また、業務改善や課題解決に向けた目標やゴールの設定にも、問いの立案は大いに役立っています。これにより、議論や施策の具体化、さらには効果検証まで、あらゆる段階で有効な成果を生むことが実感できています。 問いの練習で何が変? 明日からは、課題解決や改善の場で「問い」を立てる練習を重ねたいと思います。具体的には、問いをアウトプットして他者と議論し、その問いに向けた情報の分解、施策の立案および実行、効果検証という一連のプロセスを意識していきます。こうした取り組みを通じて、解くべき問いを見極める能力をさらに向上させられるよう努力します。 単科受講で成長? なお、学びを継続するため、4月からの単科受講も前向きに検討しています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

効率UP!ロジックツリーで問題解決

ロジックツリーの応用法は? what.where.why, howでロジックツリーを組み立てて考える方法が非常に参考になりました。これまでは、問題を発見するとすぐに分析を始めてしまっていましたが、一度全体像を分解してから分析を始めることで、より効率的に進められるように感じました。 MECEを意識する重要性とは? また、MECE(漏れなく、重複なく)を意識して考えることも重要だと学びました。特に構造化が難しい問題の場合、とにかく思いつく選択肢を挙げることが多かったですが、今後はできるだけ全ての要素をもれなく考えることを心がけたいです。そのために、さまざまなフレームワークに触れて、自分の切り口をさらに磨きたいと考えています。 コンテンツ企画での分析法は? コンテンツ企画を立案する際、プラットフォームで評価される要素を構造化した後、企画や編集、テキストといった項目ごとに詳しく分解し、それぞれの要素における理想の姿と現状のギャップを分析することが必要だと感じました。これにより、原因の分析がより深く進められると考えています。また、コンテンツの反応を良くするために、各要素ごとにブレインストーミングを行いたいと思います。 理想のコンテンツをどう定義する? まず、自分が関わる領域のコンテンツ要素を構造化し、分解することから始めたいです。その後、それぞれの要素において理想のコンテンツを定義づけし、コンテンツ制作チームと協力しながら、各要素をどのように改善するかについて議論を進めたいと考えています。

データ・アナリティクス入門

競馬データと経済学で勝ち馬予測!

馬と騎手の相関はどう? G1エリザベス女王杯の勝ち馬を予測するために、馬の成績を縦軸に、騎手の成績を横軸に設定すると、相関関係をつかみやすいと感じました。さらに、馬のコンディションを要素として加えることで、勝ち馬の傾向はよりクリアになるでしょう。 平均値はどう捉える? また、平均値について学んだ際には、大谷翔平選手の年俸が推定105億円である一方で、MLB全体の平均年俸は推定7.4億円、中央値が2.3億円とされていることに気付きました。大谷選手のような高収入の選手がいることで平均値が大きく上がっていることが分かります。同様に、YouTuberの収入でも、高所得者が一部の平均値を押し上げていることが明らかです。 株価の動向はどう? さらに、日経平均株価は時価総額の大きな銘柄が加重平均に影響を与えることを学びました。例えば、ある銘柄の株価が上昇すれば、日経平均株価全体も上昇することになります。 業務分析で何が見える? 業務の中では、交換した部品の不良品発生状況を分析することで、故障の傾向を明確にし、予防的な措置を取ることができると考えています。また、分析結果を視覚的に示すことで、説明が容易になるでしょう。部署内では、作業実績を標準偏差で分析し、業務改善に役立てています。 次回の計画はどう進む? 次回のZoomグループワークではフェルミ推定を活用してエリザベス女王杯の勝ち馬を予測する計画です。また、新NISAでは株式銘柄選びや新商品の市場規模予測にも役立てたいと思っています。

デザイン思考入門

試作×実践で拓く未来のカタチ

他の試作品に何を感じた? ライブ授業では、他の受講者が制作した試作品について説明を受け、非常に刺激を受けました。各試作品は、バックパックの課題を解決するための工夫が施され、独自の発想が感じられました。 AI画像の活用は? また、参加者の中にはAIを活用している方が多く、ビジュアル作成の段階でAI画像生成が有効であると実感しました。一方で、テクスチャーや機能、使い心地といった要素はAIだけでは表現しきれず、実際に手に取ってテストできる試作品があると、より良いと感じました。AI画像はあくまで試作の序盤で作成するものであり、実物の試作品と組み合わせて使用するのが望ましいと思います。 デザイン思考は役立つ? また、試作品と聞くと、どうしても物理的な「モノ」を連想してしまいますが、見えないサービス分野においてもデザイン思考は十分に活用できると感じました。顧客目線でサービス改善の課題を徹底的に検討し、そのフローを整備、可視化し、模擬テストを経て問題がなければ実際に現場で実行するといったプロセスが有効です。 試作をどう評価する? 商品企画の仕事に携わっているわけではないため、試作やテストの機会は限られていますが、現在、職員向けにミッション・ビジョン・バリューを展開する案を考えています。ポスターに加え、名刺サイズのものやメッセージ交換カードなど、さまざまな形式で展開する予定であり、簡易な試作を制作した上で、職員からのフィードバックを反映させながら完成度を高めていきたいと考えています。

クリティカルシンキング入門

グラフデザインで変わる!伝わる資料作り

グラフ選びは正解? グラフの見せ方において、題名や単位などの細かい部分を記載することで、相手にとって見やすくなり、目的に応じたグラフ選びが必要であることが分かりました。また、文字の色やフォントによって印象が大きく変化するので、TPOや内容に合わせたデザインにすることで、相手への読みやすさや伝わりやすさが向上すると感じました。スライドでは、さまざまなグラフを使うよりも、シンプルに一つにまとめる方が、読み手の注意を集中させやすいことが理解できました。 カテゴリ毎の工夫は? 売上などをまとめる際には、カテゴリごとにグラフを活用したいです。データの時系列、経緯、要素がどれに適しているかは、改善したい目的によって変わると思うので、初めはさまざまなグラフを試して、最適なものを見つけたいです。スライドを作成する際は、目的に応じてフォントや色を調整し、強調したい部分が派手になりすぎないよう配慮したいです。 分析で何を掴む? また、売上データのどの部分を確認し、何を分析して改善するべきかを、グラフを使って言葉で説明できるようにしたいです。そのためには、自分自身でデータを分析し、必要な情報を精査していきたいと思います。スライド作成時には、常に相手の視点に立ち、初めて見る人でも分かるように、フォントや文字、グラフを選定していきたいです。特に、どのような印象を与えたいのか、どのような意識を持ってほしいのかを考え、人の心理に働きかけられるように試行錯誤しながら練習していきたいと思います。

データ・アナリティクス入門

振り返りから見える未来への一歩

原因はどこで? 問題の原因を探る際には、まずプロセスに分けて考えることが重要です。どの段階で問題が発生しているかを明確にするため、原因を細分化し、全体を俯瞰することが効果的です。一概に「どうすれば良いか」を変えるのではなく、判断基準に基づいて選択肢を絞り込むことが求められます。 解決策は何で? 解決策を検討する場合は、複数の選択肢を洗い出し、その中から根拠をもって最適な方法を選び出すプロセスが必要です。目的と仮説の設定、実行、結果の検証と打ち手の決定という流れをしっかり踏むことで、効果的な改善が可能となります。検証項目やテスト要素は一要素ずつ実施し、他の環境要因の影響を避けるために、同じ期間内での実施が望ましいです。 A/Bテストの真意は? また、A/Bテストはシンプルで運用や判断がしやすく、低コストで少ない工数、さらにリスクを抑えた状態での改善が期待できます。テストの目的や仮説を明確にし、数値化できるデータを用いることで、検証プロセスがスムーズに進み、次の仮説や決定へと繋がります。 ボトルネックの所在は? さらに、問題のボトルネックを考える際は、問題を発見するために「何が問題なのか」「どこで発生しているのか」「なぜ問題が起こっているのか」を多角的に検討し、プロセス全体を整理することが重要です。たとえA/Bテストがシンプルであっても、同条件に揃えることが難しい場合は、具体的にどの要素が影響を及ぼしているのかを洗い出し、最適なテスト方法を選択する必要があります。

データ・アナリティクス入門

仮説の使い分けが未来を変える

仮説の区別はどう? 仮説の重要性については理解しているつもりでしたが、「結論の仮説」と「問題解決の仮説」を明確に区別して認識していなかったと感じます。結論の仮説とは「何が起きているか」を推測するもので、例えば、当年度の営業利益の予想精度を向上させるためには、今年度の新たな受注高が売上へ変わる金額が重要である、といった考えです。一方、問題解決の仮説は「何をすれば解決するか」を推測するもので、受注高の案件規模や工期の長さから、当年度中に売上へ反映されず翌年度にずれ込む可能性のある案件を抽出する、といった視点で考えます。原因の把握にとどまらず、結論の仮説検証をきちんと行うことが、効果的な問題解決の鍵となります。 検証の進め方は? 業績予想においては、結論の仮説はすでに立てられているため、次は問題解決の仮説検証に取り組む必要があります。検証では、複数の改善策候補の中からインパクトが大きく、実行しやすいものを優先し、検証可能な要素に絞って取り組むことが重要です。また、何をもって「効果あり」と判断するかを事前に決める必要があります。業績予想の精度向上を図るためには、受注から売上への転換、売上拡大、コスト削減、特定事業への注力などさまざまな要素の中から、改善余地が最も大きいものを優先順位を付けて絞り込むことも考えています。特に、当社では案件規模によって納期が大きく異なり、大型案件や工期の長い案件は年度ずれとなる可能性が高いため、その点を踏まえて仮説検証を進めなければなりません。

リーダーシップ・キャリアビジョン入門

リーダーシップに必要な感情コントロール

リーダーと上司の違いとは? リーダーと上司の違いについて考え直しました。リーダーとは、関係者との信頼関係を築き、共感や感動を通じてビジョンに向かって導く存在です。一方で、上司は管理や監督を通じて業務を効率的に進め、評価や報酬を通じて部下を指導・育成する役割を担っています。 リーダーシップの改善点は? リーダーとしての自分を考えると、信頼関係を築くために時には感情の浮き沈みがあったり、部下の意見を素直に受け入れられない場面があることに気づきました。元ソニーの平井一夫さんはリーダーに必要な要素として「感情の起伏がないこと」や「良いものは良いと言える公平な考え」を挙げており、これらを自分自身でアップデートするために今週の学びを具体化できたと感じました。 コミュニケーション方法をどう改善? 最近の業務においては、リーダーとして部下とのコミュニケーション方法や指示の出し方を改善する重要性を認識しています。例えば、部下が優れたアイデアを提案した際には、「ありがとう」や「それいいね」といった言葉を使い、嬉しい表情で接することが大切だと考えています。 海外法人での新たな挑戦 また、4月からは海外法人の責任者として新たな役割を担う予定ですが、これまでに実践・体系化したものを初日から活用したいと思います。心から良いと思えるものには率直に「良い」と感じ、その結果として自然に使う言葉や表情も変わるはずです。この変化を意識しつつ、両面から改善を図りたいと考えています。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

クリティカルシンキング入門

MECEで問題解決の達人になる!

何故分解は必要? 物事を分解することの必要性と「MECE」という概念の重要性を学びました。分解することで問題の本質や解決策が見えやすくなり、取り組むべき課題が整理されることに気づきました。また、MECE(漏れなく・ダブりなく)というフレームワークを用いることで、重複や漏れを防ぎ、全体を効率的に把握できるとわかりました。MECEを活用することで、分析や意思決定の精度を高め、効果的な解決策を導き出すことができると感じました。 どうやって結果を整理? 現在の仕事の結果をさらに向上させ、周囲に効果的に伝えるためには、結果を分解して理解を深める時間が必要だと感じています。分解を通じて、各要素の役割や改善点を明確にし、全体像を把握することで、的確なアプローチや改善策を見出せるようになります。また、分解した内容を周囲に伝えることで共通の理解を促し、チーム全体の成果向上にもつながると考えています。このプロセスを意識的に取り入れ、持続的な成長を目指したいです。 学びをどう実践? 学んだことを実践することも重要だと感じています。知識やスキルを仕事や日常に取り入れることで、単なる知識の習得にとどまらず、理解が深まり、より確実なものになります。実践を通じて得たフィードバックや気づきをもとに改善を重ねることで、さらに成長し、より良い結果につなげられると信じています。まずは一歩を踏み出し、学びを行動に移すことを意識していきたいと思います。

「改善 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right