クリティカルシンキング入門

課題を見える化!効果的な細分化の技術

解くべき問いを見つけるには? テーマが決定すればそれが解くべき課題だと考えていましたが、実際にはそのテーマを細分化し、本当に解くべき問いを見つけ出すことが重要だと気付きました。細分化する際には、解決したい姿や仮説を立て、それをもとに細分化していくと効果的だとも感じました。 理想の姿をどう描く? プロジェクトで計画を立てる際には、ただタスクを洗い出すのではなく、理想の姿を思い浮かべ、それを実現するための実現要件を意識しながら分解していきたいと思います。これにより、一つ一つのタスクの実行結果が仮説検証のためのインプットとなり、より早く正確に目標を達成できると感じます。 実現要件の整備方法は? まずは考えるテーマを決定し、その後、実現方法を考えるのではなく、実現要件を考え、それぞれの要件に対して現状を整理します。そして、解消すべき課題の特定とその解決策を考えることを習慣化したいと思います。

デザイン思考入門

アイデアは無限大!多角思考のすすめ

用途を再考している? 自社でコーヒーマシンの入れ替えを検討する際、まず用途を見直し、本当にコーヒーマシンである必要があるのかを改めて考えるべきだと感じました。そのため、SCAMPAR法を用いて他の選択肢が存在しないかを検討し、最適な方向性を見出したいと考えています。 多角的な発想は? 今回の経験を通じて、最初に思いついた解決策だけでなく、現実的なアイデアから柔軟な発想まで、さまざまな視点で問題に取り組むことの大切さを学びました。先入観にとらわれず、多角的なアプローチを試みることで、新たな選択肢が生まれる可能性を実感しました。 協力で解決策は? また、今回は一人で考えを進めましたが、チームや複数の人数で意見を出し合うことで、より良いアイデアが生まれると確信しています。今後、実際の課題に直面した際には、チームメンバーと協力して効果的な解決策を探っていきたいと思います。

データ・アナリティクス入門

データが語る、私の成長ストーリー

現状はどう伝える? 私の目的は、日々KPIを達成できる体制を構築することにあります。そのため、どのように現状を正確に伝えるかが極めて重要であり、皆に心からの気づきを与え、具体的な行動を促すことで、この目的に近づけると考えています。 状況把握の秘訣は? 毎週、先週の状況を報告し、改善された点と引き続き課題である点を会議の場で共有しています。また、状況分析は、先々週との比較だけでなく、前年同時期との比較など、さまざまな視点を取り入れて工夫を重ねるよう努めています。 解決策の効果は? 課題に対する解決行動としては、実際に取り組んでいる組織へのインタビューを実施し、取り組みの効果を定量的に分析することで、対策を行った場合と行わなかった場合の効果の違いを明確にしています。加えて、どのようなデータの見せ方が皆の意識に響くのかを考え、情報の提示方法にも工夫を凝らしています。

クリティカルシンキング入門

まとめ動画で見つけた次への一歩

復習は本当に効果的? 今まで学んだ動画や講義メモを総復習する機会となりました。記憶が薄れていた部分もあったため、まとめ動画がとても参考になりました。学習中には気づけなかった点も、再度動画を視聴することで明確になり、実際に手を動かして自分で考えることで、気づきの視点が一層深まったと感じました。 視点の切り替えはどう? また、アウトプットの見せ方についても、自分の業務の打ち合わせなどで活かせると実感しました。全体を俯瞰して何を話しているのかを他者に伝えることが難しいと感じていたため、今回の学びが自分の課題解決のヒントとなりました。 新環境でどう活かす? 今後は、4月頃までは学んだことを整理しながら自分の業務にどう適用できるかを考え、5月からの新しい環境でもクリティカルシンキングを共通言語として実践し、即戦力として貢献していきたいと思います。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

アカウンティング入門

戦略と競合を読み解く瞬間

経営戦略の実態とは? 実際の経営戦略や営業戦略がP/Lにどのように反映されるかが興味深いレッスンでした。今回の学びを通じて、いくつかの点に気づくことができました。 比較で見える戦略って? まず、同業他社との比較を行うことで、各社の特徴をより捉えやすいと感じました。また、経営戦略や営業戦略が適切に展開されているかどうか、そしてその戦略が顧客から認められるかどうかが重要なポイントであると実感しました。 分析で未来は変わる? さらに、業界内の競合他社やビジネスパートナー企業との相対比較分析により、それぞれの強みと課題を把握したいという意欲が湧きました。四半期決算報告の際にも、この視点を取り入れ、3〜5年の時間軸で推移を追いながら、変化点とその要因をしっかり捉えていくことが効果的だと感じました。

クリティカルシンキング入門

核心を突く学びの軌跡

イシューとは何か? 表面的な事象だけでなく、根本にある課題―イシュー―を捉えることが、対策の効果を最大化し成功確率を高める鍵であると理解しました。状況に合わせてイシューを変化させることが、より効果的な対策につながると実感しています。 対症療法だけで満足? 実際の業務で課題に直面する際、しばしば一時的な対症療法に終始しがちですが、もっと深く掘り下げ、的確な核心を見定めることで、本質的な対応策が生まれ、広範な効果をもたらすのではないかと感じています。 組織で実践すべき? この考え方は個人に限らず、組織全体で実践すべきだと思います。問題に直面したとき、深く掘り下げた上で課題や対応策を見出す姿勢を習慣化することで、たとえ時間がかかっても、着実な成果へと結びつくと信じています。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

リーダーシップ・キャリアビジョン入門

気づきを引き出す3ステップ

原因はどこにある? モチベーションが低い人の原因を見極める際、マズローの5段階欲求やハーズバーグの動機づけ・衛生要因のフレームワークが有効です。これらの理論を用いることで、どのレベルに問題があるのかを具体的に整理できます。 面談で何が見つかる? 個別面談では、フィードバックの質問を3ステップで行うと効果的です。まず、実際に起こった出来事や状況を確認し、次に自分自身の考えや行動について振り返ります。そして、そこから得た気づきや教訓をもとに、今後の対応策について決める場とします。事前にこれらのフレームワークを活用して職員の要因を分析することで、面談時の目標設定や振り返りがより具体的かつ実践的なものとなります。

「実際 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right