データ・アナリティクス入門

見落としがちな分析のコツ

目的は明確ですか? 目的を早く達成したいという思いから、必要な分析がおろそかになってしまうことがあることを実感しました。その主な原因は、目的そのものの解像度や比較方法の適切さに欠けている点にあると再認識しています。 appletoappleの壁は? 特に、いわゆる「apple to apple」の分析が重要である一方、その実施の難しさを強く感じました。短期間で結果を求める傾向は、判断に必要な深堀りを妨げる要因となっているといえます。 投資判断を見直すべき? また、ファンドの投資判断、景気動向の予測、予算の設定、投資先のモニタリングから得たインサイト、そしてポートフォリオのパフォーマンス検証において、これらの分析手法を活用する意向です。過去の実践において、目的の解像度や視点が十分ではなかった可能性があるため、改めて見直す必要を感じています。 バイアスなく比較するには? このような状況から、どのような方法やツール、そして比較対象を選定すれば、バイアスなく「apple to apple」の比較ができるのか、具体的な事例に基づかない形で皆さんの意見をぜひお聞かせください。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

クリティカルシンキング入門

比較と変化で見つける新発見

比較と変化は? 私は、日常の分析活動で「比較」と「変化」の視点が非常に重要であると実感しています。どの分野においても分析は欠かせず、特にメンバーから提出されるレポートを評価し、判断や助言を行う際にこの視点は大きな指針となります。 グラフで何が見える? そのため、視覚的な要素、特にグラフの活用が不可欠です。グラフはデータの比較や変化を直感的に理解させる力があり、情報を分かりやすく伝えます。また、グラフを用いた分析においては、対象を適切に分解することが重要です。この分解はMECEの原則に基づき、内容を重複なく漏れなく整理することが鉄則です。 分解の方法はどう? 分解の方法としては、基本的には均等な分割が王道ですが、状況によっては不均等に分けた方がより筋の通った分析ができる場合もあります。この柔軟な発想で分析することが、実践において非常に役立つと感じています。 分析の極意は何? 以上の理由から、比較と変化の視点を大切にし、視覚的ツールとしてグラフを積極的に用いるとともに、MECEに基づく分解を意識することが、日々の分析やレポート作成において極めて有効であると考えています。

マーケティング入門

顧客視点の深層ニーズ探求術

顧客の真意は何? 「顧客からの意見をそのまま商品化しても、それが必ずしも成功するわけではない」との考え方に深く共感しました。商品化の難しさや顧客目線での本当のインサイトをしっかりキャッチすることの重要性を感じました。顧客の声をいかに解釈し、表面的な意見ではなく、深いニーズを探ることが大切です。 なぜ競合と比べる? また、顧客目線で考えているつもりが、いつの間にか競合商品と比較してしまうこともあると気づきました。この点についても、うなずきながら学習を進められました。 差別化の鍵は何? 商品差別化が難しい状況で、デプスインタビューなどから得たニーズやインサイトを的確に読み取ることの重要性を感じています。その際、顧客のシーンやネーミングも検討の対象として考える必要があります。 具体策は何? 具体的なアクションプランとしては、デプスインタビューでの知見の洗い出しや顧客の行動を考慮した想像力の働かせ方、さらにイノベーション普及の要件をどう当てはめていくかを探求しています。他社のD2Cブランドを研究し、キャッチコピーの検討に役立つパーセプションフローを考えることも進めています。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

アカウンティング入門

問いが導く業界と成長へのヒント

業界理解は十分ですか? 一見理解しやすいと思われがちな業界であっても、その特性を十分に理解しなければ、売上や費用の数字を正しく読み解くことは難しいと実感しました。各業界の事業特性を踏まえることが、財務諸表の分析能力を向上させる鍵であると感じています。 問いで成長できるでしょうか? また、学習方法として「問いを受け、考える瞬間こそが成長の起点である」という点に気づかされ、今後の学びに大きな影響を与えていると感じました。 比較分析の基本は何でしょう? 基礎面では、自身の業界や関連業種間での企業比較分析を日々の業務に活かすことで、アカウンティングの基本的な活用方法を確立していきたいと思います。 経済全体の見方はできていますか? さらに、ビジネスマンとして様々な業種を対象に、社会経済全体の動向を理解する視点を広げる必要性を強く感じました。そのためには、各業界の事業特性や直面している社会課題を正しく把握することが不可欠です。今後は、継続して学習プログラムを受講することや、新聞などの資材を利用して社会経済全般の知見を深める取り組みを進めていきたいと考えています。

データ・アナリティクス入門

目的明確!振り返りから学ぶ分析術

比較で何を学ぶ? 分析は、比較するところから始まります。ただ単に集計結果をまとめるだけではなく、そこから得られる示唆を示したり、グラフ化して見やすく提示することが求められます。また、分析はあくまで手段であるため、常に分析の目的に立ち返り、手段自体が目的にならないよう注意する必要があります。比較対象としては、目に見えるデータや得やすいデータだけでなく、見えにくい側面も含めて選定することが大切です。 目的設定はどうする? そのため、データをエクセルで加工する前に、まず十分な時間をかけて目的や比較対象を明確にすることが重要です。目的をはっきりさせることで、分析結果の妥当性や有用性を高めることにつながり、関係者の意見を取り入れるなどして、慎重に検討する姿勢が求められます。 何を紙に書く? また、分析を始める前に、目的、比較対象、仮説などを紙に書き出しておくとよいでしょう。作業中は都度その紙を見返し、目的から逸れないよう気をつけます。目的があいまいなまま設定されることが多いため、必要に応じて、事前にまとめた事項を見直しながら分析を進めることが効果的だと考えます。

データ・アナリティクス入門

明確な目的が生む比較の力

分析の本質は何だろう? 「分析の本質は比較である」という考え方に大変感銘を受けました。最初に何を明らかにしたいのかを明確にすることで、ある要素がある場合とない場合とを比較し、効果や違いを正しく捉えることができる点は、非常に実践的で応用の幅が広いと感じています。また、生存者バイアスによって見えなくなる情報への注意も、自分の視野を広げる大切な学びとなりました。分析においては、目に見えるデータだけでなく、見逃されがちな要素にも着目し、比較の対象を冷静に選ぶ姿勢が重要なのだと実感しました。 出発点は何だろう? これまで、製造現場におけるデータ収集や可視化の業務では、まずデータを集め加工することに注力していました。しかし今回の学びを通じて、分析の出発点は「何を明らかにしたいのか」「誰がどんな情報を求めているのか」を明確にすることにあると強く感じました。顧客や現場のニーズを正確に把握した上でデータを選定・加工することで、より有効な可視化と示唆が得られると考えます。今後は、単なるデータ処理に留まらず、目的に立ち返りながら業務に取り組む姿勢を一層意識していきたいと思います。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。
AIコーチング導線バナー

「比較 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right