クリティカルシンキング入門

異なる視点で磨く伝え方の技術

交流で何を感じた? ①異なる職種や立場の方々との交流を通じた学びでは、社内では当たり前と思われる承認が得られない状況に直面しました。この経験から、自身の話し方や論理的な説明を工夫する重要性を意識しました。グループワークでは、論点を見直すための問いかけができたことも大きな収穫でした。背景として、前提知識が異なるためにフラットな視点で物事を見ることができたことも影響しています。 どのグラフが効果的? ②相手にわかりやすく情報を伝える方法については、社内であまりグラフを作成しなかったため、当初は体系化されていませんでした。しかし、学びを通じて折れ線グラフは推移を示すために、棒グラフは時系列で情報を見せるために有効であるといった具合に、体感的な見やすさを言語化することができました。 どの手順が有効? 効果的な情報の伝達には、「考える→情報を集める→再考する」という手順が大切です。具体的には、文章の目的や読み手、前提情報や懸念点を理解した上でメッセージを組み立てることが求められます。 グラフで何を伝える? また、グラフ作成は、説得や課題把握の一手段ですが、そこから何が言えるかを自分なりに言語化することが重要です。データを元に示唆を発見し、相手や自身を納得させるプロセスが欠かせません。 どの方法で振り返る? 情報の伝達にあたっては、自分が文章を作成する際だけでなく、他者の文章をチェックする機会でも、この学んだ手法を活用しています。プロジェクト完了後の振り返りにおいてもアンケート結果を分析し、最も見やすい形で伝えることに努めています。

クリティカルシンキング入門

気づきが変えた!思考の深掘り術

なぜ深掘りが重要なのか? 物事に対して「なぜ」と深く掘り下げる姿勢が大切だと気づきました。データや他人の意見を表面的に捉えることが多かったことに改めて気づかされました。クリティカル・シンキングがなぜ必要なのか。物事の意味を深く考えることが、その本質を捉えることに結び付くのだと実感しました。 ロジックツリーで得られる新しい発想とは? また、ロジックツリーの考え方を学び、自分の思いつきに頼った方法から離れることができました。課題に対して原因をカテゴリーに分けて掘り下げることで、新しい発想を得られることがあります。今後もこの考え方を活用していきたいと思います。 なぜデータの深掘りが必要なのか? 具体的には、新商品の企画立案や商品の売上分析の際に役立つと考えています。市場調査や顧客の声を参考にしている中で、データをそのまま受け取ってしまうことがあるため、なぜそのような意見やデータになるのか深掘りする思考を持ち、情報を整理することに努めたいです。また、売上分析では、顧客の感じ方をより深く理解するために「なぜ」を問い続けることで、具体的な施策提案につなげられると考えています。 思考整理の習慣化はどう進める? 一度学んだからといってすぐに身につくわけではありませんが、まずは日々の考え方の習慣づけから始めて、自分の能力として高めていきたいです。例えば、上司に確認する予定の内容について「なぜそう思ったのか」を考え直し、思考整理を進めます。また、現在の課題や案件にロジックツリーを使い、漏れや重複がないかを確認しながら原因と考察をしていく予定です。

クリティカルシンキング入門

ビジネスの課題解決力が驚くほど向上した方法

分解手順を学ぶ意義は? 分解の手順について学んだことで、ビジネスモデルの検討やプレゼン資料の作成が大いに改善されました。 効果的なビジネスモデル検討法 まず、ビジネスモデルの検討では、これまでは漠然とサプライチェーンやバリューチェーンの軸で考えていましたが、層別分解を導入することでより具体的に検討できるようになりました。この方法では全体を定義し、それをMECEに分解して視覚的に図示することで、漏れや重複が無いか確認します。具体的には、層別分解、変数分解、プロセス分解という手法を用い、それぞれの分解結果を俯瞰することで新たな発見が得られることが多々ありました。 プレゼン資料改善の鍵は? 次に、プレゼン資料の作成についてです。全体像を定義し、それを具体的な内容に落とし込む際に、MECEの考え方をしっかりと取り入れました。その結果、伝えるべきポイントをより明確に整理することができ、聞き手にとって理解しやすいプレゼンテーションになったと感じています。 日常での分解思考の鍛え方 また、日常の中でも分解思考のクセをつけるために、通勤中に目に入る店を様々な観点で分解する練習を行っています。業態やターゲット層、営業時間、品揃えの重点など、仕事とは関係ない対象で練習することで、分解するスキルが向上しました。 分解がビジネスに与える影響とは? 全体像を言語化し、その後視覚的に分解項目を視える化する過程を実践することで、物事を多角的に捉える力が養われました。結果として、ビジネスにおける課題解決の精度が向上したと実感しています。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

クリティカルシンキング入門

問題を解く力を手に入れる方法

どう問いを整理する? 問いの立て方が非常にわかりやすくなりました。日常生活の中で何かしらの問題を感じているものの、それを言語化することが難しいと感じていたため、ぜひこのスキルを取り入れたいと考えています。そのためには、まずゴールを明確にし、それに必要な情報の収集と、その情報の分析・解釈が重要だと感じました。 多角的視点は? 特に私はヘルスケア業界に関わっているため、クライアントや医療従事者、患者さんといった様々な視点を持ちつつ、社会全体の医療制度についても考慮することが必要です。 会議の目的は? 部署の会議においては、目的とゴールを明確に設定することが大切です。参加者が何を決めたいのか、何を知りたいのかを考え、そのための目的やゴールを決めていきたいと思います。 どう学びを活かす? また、研修においては、その研修をどのような目的で行うのかをしっかりと考え、目的を丁寧に設定する必要があります。新たな事業創出に際しても、まずは問題のイシューからスタートし、そこから外れないように他者と共有しながら課題解決を図りたいです。常に「それって問いは何なのか?」と自問し続ける姿勢を持ち続けたいと思います。 説明の基本は? さらに、自分が何かを説明するときには、まず「どんな問いに答える説明なのか」という前提条件を提示してからプレゼンテーションを始めることが散らばりを防ぐ有効な方法だと考えています。 資料をどう見直す? 今後、これまでに作成してきた資料などについても、これらの学びを踏まえた上で見直しを行いたいと思います。

クリティカルシンキング入門

批判的思考で偏りを乗り越える学び

なぜ自分を見つめ直すの? 思考には偏りが生じやすいため、他者との会話を通じてその偏りを克服し、自身の気づきを増やすことが重要です。自分自身を批判的に見る習慣をつけることで、偏りを少しでも解消し、気づきを増やすことが求められます。そのためには、常に「なぜ?」「本当に?」と問いかける姿勢を持ち続けたいと思います。 経験は何を教えてくれる? 私の経験では、数値を用いた口頭や資料での説明が多かったため、自分で書いた文章をチェックする習慣がありませんでした。しかし、相手の立場になって考えることで、サボらないよう心がける必要があります。また、情報を視覚化する際には、過剰に図や表、グラフを使用してしまう傾向があったと反省しています。相手が情報を探さずに済むよう、シンプルで意図を持った視覚化を意識したいです。 本当に他はあるの? 上司や部下に対する説明や説得、財務諸表の作成、プロジェクト起案、日々のメールコミュニケーションにおいて、課題への対策が過去の経験に依存しがちなため、「他にないか?」と批判的思考を忘れず問い続けることが大切です。 問題を適切に課題へと変換し、課題への打ち手を決める際には「もっと他にはないか?」と自問できるようになることが目標です。また、ゼロから一を創り出す際に適切な方法で思考を進めたいと考えています。部下に対しては適切な問いかけを行い、コーチングによって育成を加速させ、上司に対しても適切な問いかけを行うことでより良い意思決定を促していきたいと思います。組織全体でイシューを共通認識化することを意識して取り組みます。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

データ・アナリティクス入門

面倒も味方に!工程分解の力

プロセス分解の意義は? 他の研修でプロセスマネジメントを学んだとき、結果管理だけでは検証が十分に行えず、属人化や再現性の低下が生じることを痛感しました。そのため、プロセスを細かく分解し、深掘りすることで問題点を明らかにし、打ち手の検討もしやすくなると実感しています。一方、実際の現場ではプロセスの分解は意外と難しく、面倒だというバイアスもあって浸透しにくい状況もあると感じます。 見直しの方法は? また、プロセスの見直しには、目的の設定と仮説の立案を同時に行うことが重要です。前提の議論が不十分だと、プロセスを詳細に把握する意義も薄れ、問題抽出やプロセス設計が十分に進まなくなってしまいます。 ガントチャート活用は? 仕事においてマネジメントの役割を担う中で、プロジェクト開始時にガントチャートとプロセスの分解を行うようにしています。これにより、進捗状況が可視化され、遅れや抜け漏れの予防につながり、会話の目線も統一されやすくなります。 ABテストの課題は? さらに、ABテストを実施する際には、条件の検討が十分でない場合、Aを終わらせた後にBに着手する傾向が見受けられます。条件の整備が難しいため、目的と現状の把握を明確にし、ギャップ分析で仮説や課題を複数用意、優先順位をつけた上で詳細なプロセス分解を行うことが重要だと考えています。 効果的な評価方法は? 最終的には、共通の評価基準を作るとともに、アクションプランと期限を設定することで、遅れや抜け漏れを防ぎ、目線を合わせたプロジェクト管理が可能になると実感しています。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

戦略思考入門

本質に迫る!絶え間ない挑戦の秘訣

本質を理解するにはどうする? 本質を理解することは、簡単に言えても実践は難しいものです。ガリレオが物体落下の法則を発見し、ニュートンが万有引力を見つけました。しかし、それでも本質を完全に捉えているわけではありません。アインシュタインが相対性理論を提唱しましたが、それでも全てを説明するには至らず、未だに何かが欠けていると考えられています。したがって、本質を完全に理解するのではなく、むしろ理解していない可能性を認識し、仮説や定理を受け入れつつ、常に問い直して疑い続ける姿勢を持つことが重要です。この不断の努力は非常に難しく、挑戦を伴います。 時代の変化にどう向き合う? 法律や仕事の慣習も、ある前提条件に基づいています。しかし今日、米中摩擦やAI、地球温暖化などの影響で、その前提条件が大きく変化しています。もはやグローバル最適化は分断化の中で目指すべきものではなく、経済合理性も温暖化の課題を前に以前ほど盲目的に追求されるべきではありません。AIは、「働かざる者食うべからず」という鉄則に疑問を投げかけ始め、多くのことを考え直す時期が来ています。この先もサラリーマンとして働き続けるべきかどうか、定期的にAIと相談しながら検討していきたいと思います。 新しい生き方を探るには? また、ChatGPTのようなDeep Researchの技術も登場しています。この技術を利用して、定期的に収入とリスクのバランスの良い生き方を探り、もしサラリーマン以外の道を選ぶとしたら、どのような方法があるのかを確認していきたいと考えています。

「課題 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right