マーケティング入門

異文化コミュニケーションで壁を超える方法

学びの共有でなぜ成長? 毎週の学びをグループ全体で共有し、個々の考えを深めることで、しっかりと振り返ることができたと感じました。顧客のニーズをどう繋げるか、お客様にどのように伝えるか、そして実際にどのように業務に反映させるかを再考する貴重な時間となりました。 マーケティングの課題は何? マーケティングは一言で説明できないものであり、実際にそれを実践することも簡単ではないと実感しています。自社製品が顧客にとってどのように必要かを考える中で、外国の本社という壁をどう打破するか、日本国内での意見をどのように本社に伝えて理解してもらうかが課題です。 強い表現は何故必要? 本社の人間から「日本人は良い意味で丁寧だ」との評価を受けましたが、時には自身の意見を外国人にも伝えるために、強い口調で「ここは譲れない、この日程は守ってほしい」といった主張をする必要を感じています。 社内連携をどう実現? 国内外の社内コミュニケーションの強化と、日本国内の顧客ニーズを詳しく本社に伝えることの重要性を強く感じています。これを怠ると、本社が考える外国人向けの製品を日本で売り続けることになると痛感しています。どこが日本側で変えられないか、どこを本社に伝えて変えてもらえるかを検討する必要があります。そのためにも、社内関係者とのコミュニケーションを密にし、検討を進めていきたいと考えています。

マーケティング入門

仲間と挑む学びの軌跡

どのように学びを実感? これまでの学びを通じて、WEEK1で掲げたありたい姿を再整理する中で、自分がどのような観点で取り組むかを具体的に言語化する力が身についてきたと感じています。また、仲間とのワークを通して、考えを簡潔に伝える工夫を磨くとともに、他の方の意見に触れることで多くの気付きを得て、自身の知見も深まりました。 どう運営の基本は? 商品プロジェクトを運営する際には、まず誰をターゲットにするか、どこでいくらで販売するか、そしてどのように魅力を伝えるかを明確にすることが基本であると再認識しました。新商品の価値や魅力を分かりやすく提案するだけでなく、既存商品の場合でも、まだ注目されていない魅力や使い方、新しい価値を提案することが肝要です。キャンペーンを検討する前にも、同じくターゲット層、販売場所、価格、魅力の伝え方をしっかり考えることが必要だと実感しています。 期限と目標は? さらに、何をするかを具体的に考え、いつ始めいつまでに終わらせるかを決めることが大切です。これらの行動が、会社や支社、自身の業務の方向性としっかり照らし合わせられているかを確認しながら、常にワンランク上のストレッチ目標を設定して取り組むことが求められます。目標が実現可能であるかをチェックし、上司や同僚に宣言した上で、週に一度、目標と進捗を見直す習慣を身につけることが、より高い成果に結びつくと感じています。

マーケティング入門

Z世代の心を掴む新しいマーケティング戦略

ターゲット顧客の真のニーズとは? 今回の総合演習では、ターゲット顧客の不満から真のニーズを把握し、行動パターンに基づいて体験価値を付け加えることで、新しい市場で顧客を勝ち取る方法を学びました。特に、スマートフォンが当たり前となったZ世代が急速にトレンドを変えていることを実感しました。彼らの媒介を見る視点や、枠にとらわれない考え方は、新しい発想の基盤となり、Z世代について深く考える良いきっかけとなりました。 自社商品に付加価値をどう与える? 今回の『顧客が価値を感じる体験を付加価値とする』という考え方は、私たちの自社商品においても非常に重要です。しかし、我々の製品は気軽に手に取れるものではないため、新たなアプローチが必要だと感じました。その一方で、手軽に手に取れないという特性を逆手にとり、数少ない『体験できる場』に重きを置くことで、顧客が「行ってみたい」と感じるようにするのも一つの手法として考えられます。 次なるマーケティング戦略 具体的には以下の点を考えてみました: - 日常の中で触れる、または目に留まる商品にプラスαの価値を持たせる方法を検討する。 - 体験価値とは何か、その体験によってどのような感情が生まれるのかを自ら検証する。 - マーケティングの本を読み、さらに理解を深める。 このようにして、顧客の体験を重視する新しいマーケティング戦略を考えていきたいと思います。

クリティカルシンキング入門

学びのカギは「問い」から始めよう

今週の学び「問いの立て方」とは? 今週は「問いの立て方」について学びました。その内容としては、以下の3点が重要です。 1. **問いから始める事**:最初に問いを意識すること。 2. **問いを残す事**:問いを意識し続けること。 3. **問いを共有する事**:組織全体で方向性を共有すること。 解決策とは何を指すのか? 「問いから始めること」について特に考えさせられました。総合演習の設問で解決策と課題のまとめを行う中で、「そもそも何を解決したかったのか」が不明確なことに気が付き、自分自身で今ここで答えを出すべき問い(イシュー)を意識して取り組む必要があると改めて感じました。 業務への応用を考えてみる ここから得た気づきを基に、社内外の業務にどのように応用できるかを考えてみました。 **製品仕様、要求仕様の検討**: 製品の細かい仕様やユーザーからの要求仕様を製品仕様に落とし込む際、「何のために必要な機能か」「本当に必要な機能は何か」を最初に考え、イシューを設定してから仕様の検討に着手することが重要です。 **社内の打合せ**: 社内外の打合せでは、目的をイシューとして設定し、会議の時間内に何を決めるべきかを明確にすることで、会議の時間を効率的に使えるようにする必要があります。 以上のように、問いを意識することが、業務の効率化や質の向上に寄与すると感じています。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

戦略思考入門

捨てる勇気が変える働き方

優先順位はどう考える? 軸を持って優先順位を決めているつもりではありましたが、実際には投資時間の効率性への意識が不足していると感じています。日常的に優先順位は決めているものの、必要のないものを「捨てる」選択が十分にできていないと痛感しました。無駄な業務に惰性や自己満足が紛れていないか、常に意識しなければならないと考えさせられました。 業務選びは正しい? また、業務の選択においては、トレードオフになってしまうとき、どちらかに偏れず中途半端な結果に陥ってしまうことも多いと感じています。一方で、必要なものを削ぎ落とすことが、結果として顧客の利便性向上につながるという点は非常に印象的でした。 部署の役割は明確? その学びを活かし、現在進めている自部署の業務範囲・役割の明確化プロセスに取り組みたいと思います。業務範囲が曖昧になりがちな部門であるため、まずはありたい姿や部署の役割を部内で議論し、それを基に部署の目標を再設定し、判断基準の軸を定めることが重要です。 業務の仕分けは正確? 具体的には、まず現在の業務を棚卸しし、判断基準に合致するものとしないものに仕分けます。合わない業務については、完全に実施を中止するのか、または外部委託など別の方法を検討する必要があります。一方、基準に合致する業務については、それぞれに対して適切な予算や人員の配分を再検討していきたいと考えています。

クリティカルシンキング入門

振り返り文で学ぶ問題解決テクニック

物事を分解する利点は? 「物事を分解する」という手法は、複雑な問題や課題を整理し、本質を掴むために非常に有効だと感じました。分解することで得られる利点として、全体像の明確化、真実への気づき、主観や思い込みの排除、具体的なステップの可視化が挙げられます。これにより、行動に移しやすくなり、自信がつき、切り口が増え、無駄が減ることで、コミュニケーションも円滑になります。 IT業界での分解の活用法は? 私はIT業界で働いています。分解を効果的に活用する場面としては、システム障害時のトラブルシューティングがあります。アプリケーションエラーの要因や原因を細分化して判断します。また、要件定義やシステム設計では、顧客の要求を具体的に細分化し、それぞれの機能や動作について詳しく検討・具現化します。プロジェクト管理やコードレビューにおいても、工程やタスクを細分化して効率的に管理し、効果的なレビューを行います。 明確な目標設定の重要性は? 実践においては、明確な目標設定が重要です。例えば、障害対応や要件定義の工程で課題を意識し、発生した問題を分解して整理します。分解された要素の因果関係を確認し、特に障害対応時には優先順位の判断も必要です。また、仮説を立てる姿勢やツールの活用も有効です。こうしたプロセスを定期的に繰り返し、振り返りを行いながら、自分のスキルとして確実に身につけていきたいと思います。

データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

データ・アナリティクス入門

データで切り拓く問題解決の未来

データで課題をどう切り分ける? 問題解決のプロセスやロジックツリー、MECE、あるべき姿と現実のギャップを定量的に把握するなどの知識は、実際に活用する際には難しさを感じました。特に、データの観点から課題を切り分ける作業はやや複雑でした。マーケティングや事業計画など多様な視点が浮かぶ中で、データに基づいて論理的に整理する必要性を実感しました。 深まったMECE理解の意味は? 総評として、問題解決プロセスやMECEの理解が深まったことは良い成果です。データの視点で課題を切り分ける挑戦には大きな可能性があります。今後経験を積み重ねることで、さらに力をつけていくことが期待されます。 日常業務にどう活かす? 学んだ知識を実務で活かすために、日常業務での意識的な取り入れが重要です。データ活用の支援においては、問題解決のプロセスを意識し、ロジックツリーを用いて問題の分解や特定を進めます。また、アンケートの相談が多いことから、その目的とKPIの確認を行い、MECEを意識した取り組みが必要です。 具体的なデータ活用法は? データ活用のサポートでは、問題解決のプロセスやロジックツリーを確認し、相手との認識を合わせ、問題点を明確にします。問題のあるべき姿と現実のギャップを定量的に示し、解決策の検討を行います。アンケート項目の確認においても、MECEを意識して進めていきます。

「検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right