クリティカルシンキング入門

問い続ける力が未来を創る

初めての学びは? Week1からの学びを振り返り、重要と感じた項目を整理しました。これを同僚に伝えるべきだと考えています。 問いをどう継続? まず、「問いを意識し続ける」ことが大切だと感じました。問いの意識を緩めてしまうと、物事を漠然と受け入れてしまうリスクがありますので、常に問いを意識し続ける習慣が必要です。また、経営者などの上位層の視点で問いの意味を考えることも重要です。現在のポジションの考え方では上位層の課題を理解するのは困難ですので、上位層の視座、視野、視点で問いを考え、課題を具体化する必要があります。 常識に挑む理由は? さらに、「そもそも」を意識し続けることが大切です。人は現在の業務を素直に受け止め、変えたくないと思う傾向があります。しかし、常識やルールに対しても常に疑問を持つことが求められます。資料作成も軽視せず、理解を早めるためのひと手間を惜しまないことが重要です。打ち合わせを口頭のみで行うのは相手に失礼であり、時間を浪費する行為ですので、資料を前提として、効果的に理解を得るための工夫を心がけるべきです。 経営層の視点は? 経営企画を担当している立場としては、様々な問いを持ち、課題や施策を検討していきたいと考えています。例えば、「全社の売上・利益を最大化するには?」といった問いに対する解答を見出すため、経営層・上司の視点を意識し、必要な情報を捉えることが重要です。また、根拠となるデータ収集・分析も重要なプロセスであり、そのための環境整備にも取り組んでいきたいと考えています。 報告の意義は? 業務上、毎月定例の業績報告があり、課題や施策の検討機会を得ることができます。この報告準備を課題・施策を考える契機とし、報告対象である経営層が必要とする情報を仮説しながら組み立てることを継続的に実施したいと思います。 研鑽の成果は? 自己研鑽の一環として、同僚や部下へのレクチャーを行うことで、自分のスキルアップにも繋がると考え、社内で勉強会を開催していきたいと思っています。勉強会の内容は、業務上でのクリティカルシンキングや戦略的思考を取り入れたものにし、業務と関連させることで理解を深めてもらいたいと考えています。開催後には、内容が本当に役立ったかを問い続け、常に反省し、内省する意識を持ち続けたいと思います。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

クリティカルシンキング入門

グラフが語る学びの転換点

グラフ活用は効果的? データを加工する際、グラフの持つ威力を改めて実感しました。単なる表では見えにくかった傾向が、グラフにするだけで一目で把握できるということが分かりました。特に、強調すべき大きな傾向に矢印などを加えて示すと、視覚的なインパクトが増し、情報に説得力が出ると感じました。 切り分けのコツは? また、どのように切り分ければ傾向が明確になるのかは、実際に手を動かして試行錯誤することでしか掴めないことが分かりました。年代別やキリの良い数値で区切るだけでなく、定性的な仮説を立てながらいろいろな切り口を試してみることが、より正確な情報整理につながると実感しました。 複数角度で見る? 数値そのものだけでなく、率を用いて見ることも非常に重要です。一つの切り口に頼るのではなく、複数の角度からデータを分析することで、より解像度の高い情報が得られる可能性が広がると考えています。 分析が楽しいの? 以前は、数字やデータ分析が苦手だと感じ、グラフ化するのにも抵抗がありました。しかし、実際にグラフにすることで情報が整理され、意外にも分析が面白いと気付くことができました。面倒な作業と感じていた部分が、より良いアウトプットへとつながる大切なプロセスだと認識できたのは大きな収穫です。 資料作成は説得力? 顧客への業務報告や来年度の予算提案の際に、グラフ化したデータを根拠として示すことで、自社の貢献度や改善点を明確に伝えることができます。視覚的な効果や率を意識することで、顧客の意思決定をサポートする説得力ある資料作成に役立っています。 目的は伝わる? これまで、前例をそのまま踏襲するだけで、資料作成自体が目的化してしまい、伝えたい内容が不明瞭になっていた部分がありました。今回、グラフをどのように切り出し、どのように見せるのかと改めて考え直すことで、伝えるべき本来の目的に立ち返る必要性を感じました。 再確認の方法は? 今週は、過去に提出した業務報告書を振り返り、各ページで何を伝えたいのかを再考する作業を行う予定です。皆さんも、資料作成が目的化してしまい、本来の伝えたいメッセージが薄れてしまう経験はありませんか? もしあれば、どのようにして本来の目的を再確認していますか。

戦略思考入門

未来を切り拓く戦略のヒント

未来をどう描く? 今週の学習で強く印象に残ったのは、戦略思考の本質が「未来を描き、逆算して今を選択すること」にあるという点です。戦略は単なる計画ではなく、最終目標を明確にし、それを達成するために必要な行動を整理する思考方法だと理解しました。特に「何をすべきか」「何を捨てるべきか」、そして「現状で不足しているものは何か」を見極めることが重要です。また、戦略思考には変化に対応する柔軟性も求められ、環境の変化や予期せぬ状況に備えて複数のシナリオを想定しておくことが不可欠だと感じました。この学びは業務のみならず、キャリア設計にも直結しており、10年後の自分を見据えた上で、今どのような挑戦をすべきかを考える枠組みとなっています。戦略思考を身につけることで、目的があるからこその選択を行ったと説明でき、意思決定に対する自信も深まると実感しました。 情報整理はどう? 今週学んだ戦略思考は、複雑な判断や情報の選別が求められる業務で有効だと感じています。特に、最終目標に向けて必要な要素を整理し、優先順位を決定する場面において効果を発揮すると考えます。例えば、情報収集や分析の際には、すべてのデータを集めるのではなく、目的に直結する情報を見極めることが大切です。また、環境変化や予期せぬ事態に備えて複数のシナリオを準備し、柔軟に対応することも必要です。具体的な行動としては、まず最終目標を明確にし、その達成に必要な要素を整理します。次に、「何をすべきか」「何を捨てるべきか」「現状で不足しているものは何か」を洗い出し、行動計画に落とし込むことが求められます。さらに、定期的に現状を振り返りながら仮説を検証し、計画を修正することで柔軟性を確保できます。 独自性の見つけ方は? また、今回の学びで「独自性(強み)を持つことの重要性」が心に残りましたが、自分自身の独自性を具体的にどう分析するか、その決め手となる視点がどこにあるのか、疑問も残りました。戦略思考の型は理解できたものの、具体的に自分に引き寄せる際にどの視点や方法で強みを見つけるべきかを知りたいと思います。他の受講生の皆さんがどのように自分の独自性を見極め、業務やキャリアに活かしているのか、その具体的な取り組みについて議論できればと考えています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

データ・アナリティクス入門

ロジックで切り開く未来への一歩

どこに問題ある? 問題を明確にするため、まずはプロセスごとに分解し、どの段階に問題が存在するかを捉えます。具体的には、What(問題の明確化)、Where(問題箇所の特定)、Why(原因分析)、How(解決策の立案)の4つのステップに沿って検討します。ロジックツリーを活用することで、体系的かつ効率的に思考を進め、見落としのない分析が可能となります。また、全体を複数の部分や変数に分解する層別分解も有効です。 仮説はどう広がる? ライブ授業では、既に把握している内容を元に分解を進め、仮説を複数立てて何を明らかにするかを検討していきます。グラフなどで可視化し、重点的に見るべき箇所を明示することで、ストーリー性を大切にしながら分析を進めています。仮説を広く立て、可能性のある原因を網羅的に洗い出す点がポイントです。 日常分析の実践は? 日常の分析業務では、ロジックツリーを活用したプロセス分解がまだ十分でないため、正確な分析を目指す実践に取り入れています。解決の4ステップに従って、原因追及だけでなく提案まで行うことを意識し、当たり前のことにも疑問を持ち「なぜ」を繰り返すことで、自然とできるようになるまで継続していく所存です。 スキル習得はどう? 今後は、データ分析に必要な専門スキルの習得にも力を入れていきます。たとえば、SQLは毎朝の学習を継続し、プログラムや統計学、機械学習については、講座終了後に専門スクールで集中的に学んでいく予定です。 フィードバックは大切? さらに、依頼された分析だけでなく積極的にデータ分析に取り組み、上司や同僚からのフィードバックを得ることで自らのスキル向上を図ります。日次、週次、月次のKPI目標の振り返りを行い、要因分析にはロジックツリーやMECEを用いてプロセスを分解し、より正確な分析を実践していきます。 情報共有は進んでる? また、分析に必要な情報収集のため、自組織や他部署のメンバーとの密なコミュニケーションを重ねながら、Webマーケティングやデータに関する知識の習得にも取り組みます。これらの活動を具体的なスケジューリングに落とし込み、着実に専門知識を身につけていきたいと考えています。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

戦略思考入門

戦略思考で未来を切り拓く

戦略の秘密は? Week5では、戦略は個別の打ち手ではなく、その背後にある仕組みやメカニズムを理解して活用することが重要だと学びました。規模の経済や範囲の経済、ネットワーク効果といった事業経済性が戦略の根拠となる中、TF社のケースからは「調達量を増やせばコストが下がる」という単純な発想だけでは不十分で、需要や販売体制を含む全体設計が不可欠であると実感しました。また、OODAの考え方に基づいた仮説の立案、実行、検証のプロセスを通じて、数値的な裏付けとともに戦略が磨かれていくことを学びました。 戦略現場で何が重要? 一方、総合演習で取り組んだオアシスタクシーでは、戦略の本質が「やることとやらないことを決めること」にあると再確認しました。中古車販売においては、既存のバリューチェーンとのシナジーが期待できる一方、配車アプリの導入では礼儀正しさといった強みを損なわない工夫が求められました。ここでは、SWOTや3Cといったフレームワークを用いることで、事実を顧客目線の価値に翻訳する力が試され、売上や利益の概算作業を通して、意思決定に具体性と現実味が加わることが実感できました。 成功の要因は? 総じて、Week5で学んだ「なぜ効くのかを説明するメカニズムの理解」と、オアシスタクシーで実践した「顧客価値に翻訳して意思決定に落とし込む作業」が結びつき、戦略的思考が自分の中に実装されつつあるという手応えを得ることができました。 学びをどう活かす? 今回の学びを仕事に展開する際には、特に人事制度改定の局面で戦略思考とOODAループの有効性を強く感じています。会社の提案をそのまま受け入れるのではなく、多角的に情報を収集し、組織としての方向性を決定、そして意思決定を経た上で具体的なアクションに結びつけるというプロセスは、戦略的思考とOODAループが融合した実践そのものでした。 共有の意義はどう? 今後は、こうした気づきや実践を自分だけに留めず、同僚と共有する勉強会を企画したいと考えています。戦略思考やOODAループを日常業務に照らし合わせて議論することで、個人だけでなく、チームや組織全体の戦略的判断力の向上が期待できると感じています。

データ・アナリティクス入門

仮説思考でビジネスを加速するテクニック

仮説の意義をどう捉える? ビジネスにおける仮説は、結論に対する仮の答えや具体的な問題解決のための仮説を含み、過去、現在、未来の視点から分析します。仮説の意義は、次のような点で明確です。まず、検証する姿勢が向上し、その結果として意思決定の精度や説得力が増します。また、関心や問題意識が高まるため、仮説形成には不可欠です。そのほか、スピードアップにつながり、行動の精度も上がります。 仮説の立て方はどう? 仮説を立てる際には、知識の幅を広げ、「耕す」アプローチが重要です。ここでは、なぜ5回も別の観点や時系列、将来予測、類似・反対事象とセットで考えます。また、ラフな仮説を作るために常識を疑い、新たな情報との組み合わせや発想を止めない工夫が役立ちます。極端な仮定の質問や一見ばかばかしい質問、否定形を作ることによって常識をリセットし、価値ある組み合わせを見つけます。さらに、「だから何が言える?」「他に何があるか?」といった継続的な発想が重要です。 仮説検証のポイントは? 仮説の検証においては、必要な検証の程度を見極めた上で、フレームワークの活用と情報収集を行い、分析します。また、仮説の肉付けや方向転換も検討します。仮説思考をリードするリーダーとしては、率先して行動し、質問を投げ、チームで役割を分担することが求められます。さらに、自分の生きがいやパフォーマンスを再確認するリーダーシップも重要です。 購買の実態をどう見る? 購買プロセスとしての5Aカスタマージャーニーでは、認知、訴求、調査、行動、推奨の各ステップを踏みます。購買が必ずしも目標ではなく、SNSなどでの愛着共有や拡散が重要視されます。企業発信よりも、顧客からの発信が心に響くため、その点を重視します。 募集戦略はどう練る? 教育カリキュラムの構築と生徒募集活動の二つの側面で仮説思考と検証を行います。特に生徒募集活動に関しては、5Aカスタマージャーニーを考慮し、広報活動に活かします。知識を「耕す」ためには、ノートにまとめ、実践し結果を記録していくことが大切です。さらにフレームワークを積極的に活用し、チームと共有することや、リーダーとして建設的な質問を投げることが求められます。

データ・アナリティクス入門

仮説と実践が創る成長の軌跡

検証プロセスはどう進む? まず、検証のプロセスは「問題の明確化(what)」「問題箇所の特定(where)」「原因の分析(why)」「解決策の立案(how)」という4段階に分解されています。これにより、検証を行う側も結果を伝える側も、内容を分かりやすく把握することができます。 仮説は何で生まれる? 次に、仮説検証では、なぜ問題が発生するのかという問いに対して、最初は考えを絞らずに複数案を出してみることが重要です。その際、フレームワークを活用して、情報が抜け落ちたり重複したりしないようにすることで、双方にとって理解しやすい検証が可能となります。 比較はどう整理すべき? また、比較検証を行う際は、必ず同じ条件下で情報を整理することが求められます。同じ基準で比較しないと、結果に誤差が生じやすいため、グルーピングの段階から条件を揃える工夫が必要です。 知識のアップデートは? さらに、一般常識や最新のニュースに目を向け、常に学び続けることが大切です。自分の判断基準が古く、発展しなくなると検証能力は向上しません。 モノづくりの課題は? 普段取り組んでいるモノづくりの研究・開発現場では、商品コンセプト、技術・性能・品質、コスト、人材育成など、さまざまな分野の問題を分解して検証しています。問題が数多く存在するため、優先順位をつけることが重要です。自分ひとりで作業するわけではなく、誰もが納得できるような優先順位の付け方や見せ方に工夫を凝らしています。現在は、特にコストの問題を最優先して取り組んでおり、若手には楽しい商品開発の役割を担ってもらっています。 成果をどう伝える? 仮説を立てながら、ChatGTPの助けを借りつつ情報を整理・検討するプロセスは非常に有意義です。その結果を他者に伝え、納得が得られるかどうかを検証の一つの指標としています。 出張準備は万全? また、7月から8月にかけて海外出張を予定しており、その準備として自分の考えを整理し、誰もが納得できるストーリー作りと、事実に基づいた情報収集に努めています。出張先で提示した問題定義に対する回答を、秋頃に成果物として検証する計画です。
AIコーチング導線バナー

「情報 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right