クリティカルシンキング入門

伝わる文章の作り方、一緒に学ぼう

オンライン学習の気づきは? ナノ単科のオンライン学習を通じて、文章や資料作成における基本的なポイントを改めて学びました。文章は、目的と読み手を意識した構成で、情報が論理的かつ理解しやすい順序で提示され、内容が伴うかたちで伝えられていました。 伝わる文章作成の工夫は? 文章を書く際には、定型文に陥ることなく、自分が実際に受け取る側の視点で工夫が凝らされており、無駄な表現を省くことでシンプルかつ具体的な内容にまとめられていました。アイキャッチの効果やフォント、色の使い方にも配慮が感じられ、読む人にとって分かりやすい工夫が随所に散りばめられていました。 資料作成の見せ方は? 一方、資料作成においては、情報がてんこ盛りになりがちな内容の中から、本当に伝えたいポイントを明確にし、必要な内容を効果的なグラフとともに提示することで、視覚的にも理解しやすい資料へと仕上がっていました。グラフの種類やタイトルの付け方、文字の使い方など、細かな点まで気を配られている点が印象的でした。 経験から何を得た? 全体として、今回の学びは、より伝わりやすい文章と資料作成のための貴重な経験となりました。今後もこの経験を踏まえ、受け取り手にとって理解しやすい情報発信を心がけていきたいと感じています。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

デザイン思考入門

共感で紡ぐ課題解決の瞬間

どうやって本質を見抜く? 業務でデータ活用を推進する中、ユーザーの困りごとをヒアリングする機会がありました。慣れ親しんだ業務に没頭していると、ユーザー自身が困りごとに気づいていない場合があるため、共感をもって話を聞くことで本質的な課題を浮き彫りにすることができました。 なぜ議論は広がる? 共感を通じて相手が話しやすくなると、本来の課題を見出すことができる一方で、深く話を聞けば聞くほどさまざまな課題が表面化し、議論が広がりすぎることもありました。この経験から、目的を常に明確にしながら、ユーザーの「困りごと」を丁寧に整理していくことの重要性を痛感しました。単に話を聞くだけでなく、どこに本当に困っているのかを正しく理解し、課題を構造的にまとめるスキルが求められると感じています。 今後の対策は何? 今後は、共感と整理の両輪を意識し、言葉を丁寧に整えることで、相手の気づきを引き出し、より良い解決につなげたいと思います。 何を学び実践? 今日の学びは、「共感」と「整理」のバランスが重要であるということです。相手の話に耳を傾け信頼関係を築くと同時に、目的を見失わずに情報を整理する視点を持つことで、ユーザーの困りごとを深く理解し、言語化および構造化する力をさらに磨いていきたいと考えています。

クリティカルシンキング入門

問いが導く自己成長ストーリー

問いの重要性は? 「問い」から始めるという視点が、今回の学びの中で特に印象に残りました。まず、常に「今何を考えているのか」を自分自身に問いかけることで、単に身近な情報に頼るのではなく、目的や目標を明確にしながら考える重要性を再認識しました。 自己評価の見方は? また、思考のプロセスにおいては、自分の考えを客観的に評価する「もう一人の自分」を育てることが大切だと感じました。具体と抽象の動きを意識的に行うことで、より広い視点からアイディアを整理・展開し、最終的に論理的な結論に導くための自己チェックが可能になります。 実践から何を学ぶ? 具体例としては、week1で実践した「自分の思考をチェックするもう一人の自分を育てる」と「具体と抽象のキャッチボール」を通じて、発想を広げる効果を実感しました。また、week6に学んだ「今何を考えているのかを自問する」手法は、常に問いを軸に考える習慣の大切さを改めて感じさせるものでした。 議論はどう進む? 普段の議論や施策の検討においても、まずは明確な問いを立て、その問いに沿って具体的なアイディアと抽象的な概念を行き来させながら自分自身の考えをチェックすることは、よりクリエイティブで実効性のある結論にたどり着くための有効な方法だと感じます。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

クリティカルシンキング入門

ピラミッドストラクチャーでプレゼン力アップ

日本語を適切に伝えるためには? 日本語を正しく使い、自分の考えを適切に相手に伝える重要性を強く感じました。普段は主語と述語を意識せずに生活していましたが、今回改めて強く意識する必要があると実感しました。 文章を俯瞰して評価し、手順を踏んで書くことも重要だと感じました。この整理一つで、決裁が取れるかどうかが大きく変わるのです。 ピラミッドストラクチャーの活用法とは? 特に、ピラミッドストラクチャーを活用し、メインメッセージからトップダウンで支える要素を分解していく手法が有効です。社長への決裁や報告の際に、この手法を使って資料を整理すれば、資料だけでも伝わると感じました。 また、セミナーや勉強会など多くの人に何かを伝える際にも、どのような情報をどの順序で伝えると相手が理解しやすいかを整理できるため、効果的に情報を伝えられると感じました。 社内での実践機会をどう活かす? 今後、社内で勉強会を実施する機会があるため、その際の目的やテーマの整理から、内容や構成に至るまで、さまざまなシーンでピラミッドストラクチャーを活用できるイメージが湧きました。 直近では、月間事業部報告の機会があるため、報告資料にこの手法を活用し、簡潔かつ論理的に報告内容をまとめる予定です。

クリティカルシンキング入門

思考のクセを超えて広がる視野

無意識の制限は何? 「無意識に思考を制限させること」が心に響きました。講義で自分の思考が無意識に制限されていると認識したのですが、日常生活でも同様に感じることがありました。まずは自分の思考のクセを認識し、それが客観的に見れているかを繰り返しチェックすることの重要性を理解しました。 会議で何を掘り下げ? 社内外のミーティングでは、課題解決型の会議の中で問題や課題の深掘りに活用できると思いました。客観的かつ多角的視点で事象に向かうように心掛けたいと思います。また、上司や同僚との会話では、考える準備ができないまま話すことがあるため、目的を意識し、思考に偏りがないよう理論的に筋立てて説明することを目指します。そして、相手の考えを注意深く聞く姿勢を持ちたいです。 他者の意見はどう? 他者の意見を取り入れることは、自分にない思考を養い、客観的かつ多角的な視点を広げる助けになります。会議や会話の後には、自分の発言が客観的であったか、偏りがなかったかを振り返るようにし、必要に応じて他者からフィードバックを受けることも大切です。常に疑問を持つことで、情報や他者の言葉を鵜呑みにせず、客観的に問いかけながら本当にそれで良いのか、目的に合っているのかを考えていきたいと思います。

データ・アナリティクス入門

平均値だけじゃ見えないデータの世界

グラフは何が魅力? データを単に羅列するだけでは、その特徴を十分に捉えにくいと感じます。グラフや数字を積極的に利用することで、情報がより具体的に伝わります。グラフは目的に合わせた種類を選択することが重要です。 代表値とばらつきは? 数字を扱う際は、代表値とばらつきの両面でデータを確認する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、ばらつきは標準偏差によって把握できます。 平均値だけで良い? 業務においては、これまで平均値のみで物事を理解したつもりになってしまうことがありました。今後は、ばらつきも合わせて確認することで、データの持つ本質をより正確に捉えるよう意識したいと思います。 NPSは評価できる? また、各ブランドごとに算出したNPSについても、単に数値のみを評価するのではなく、回答の分布にも目を向けることが大切です。 グラフで見える? ユーザー調査では、各回答を平均値で報告するケースが多いですが、ばらつきに着目することで、各データの特徴がより明確になります。一方で、標準偏差を数字だけで示すと直感的に理解しにくい部分があるため、グラフを効果的に活用することで改善できると感じます。

戦略思考入門

戦略思考で目指せ!結果最大化の道

戦略をどう磨く? 戦略思考を身につけるためには、まずgoalを明確に定めることが重要です。その上で、goalに到達するための最短経路を考え、必要に応じて戦わない選択肢も含めることが求められます。また、他のメンバーをうまく巻き込んでいくことや、必要なものと不要なものを取捨選択することも重要です。戦略では長期的な視点、戦術では短期的な視点の両方を持ち、自分の強みを活かすことが必要です。 goalはどう具体化? goalの具体化については、例えば日々の顧客との面談や、新規プロジェクトで短期間で結果を出すことを求められる場面、定例のチーム会議などがあります。上層部からの方針を鵜呑みにせず、その意義を考えたり、結果を最大化する方法や、誰を巻き込むと効率よく達成できるのかを思索し、提案していく姿勢が求められます。 各面談はどう備える? 各面談でgoalを明確化し、準備したスライドに脱線しそうな不要な情報が含まれていないかを事前に確認することが大切です。また、プロジェクト実施中はgoalに合致した内容かを常に意識し、実施したこと自体が目的化しないよう注意を払う必要があります。他のメンバーには意見を求め、自分と異なる意見であっても一度は受け入れる姿勢が求められます。

データ・アナリティクス入門

分析と比較で成果を最大化するヒント

分析には何が必要か? 今週は、「分析には比較や目的設定が重要であり、条件を揃える必要がある」という内容を学びました。確かにそうだと思う内容が多く、これらのポイントは今後も常に忘れないようにしたいです。 新たな知識の発見 一方で、LIVE授業を通じて新しい知識も得ることができました。定量分析に定性分析が加わることや、平均にするべき数字と平均にしないほうが良い数字など、目的によって異なるという点が特に興味深かったです。 クライアント提案時の比較 クライアントへの提案時には、広告効果を伝える必要があります。他社や過去の結果と比較し、より効果があることを示したいです。また、自身の営業計画を立案する際にも、過去の実績や先輩の成果と比較し、達成の共通点を探りたいと思います。 上長との振り返りで何を確認する? まずは上長と今回の学びを振り返り、クライアントへの提案で話せるように比較ポイントを洗い出したいと思います。上長と取りこぼしがないか確認し、その後で必要な情報を集めます。さらに、四半期ごとの計画立案時には、自分の達成した成果と比較し、成功のポイントを明確にしたいです。また、達成傾向にある先輩と比較することで、さらなる成功の糸口を見つけたいと思います。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

「情報 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right