データ・アナリティクス入門

仮説が拓くビジネスの未来

仮説はどんな意味? ビジネスにおける仮説という視点と、フレームワークを活用した論点整理の方法を学びました。仮説を持つことで、仕事に取り組む姿勢が変わり、対峙する問題に対する説得力が増すとともに、ビジネス全体のスピードと精度の向上につながることが理解できました。 どう書き出す? また、仮説を立てる際には、単なる思い込みではなく、まずフレームワークに沿って書き出す方法を試してみようと思います。もし思い込みのまま仮説に基づいて行動を始めると、後に仮説と異なる検証が有効であった場合、その検証を継続することが難しくなる恐れがあります。 現状把握の理由は? さらに、仮説設定に入る前の現状把握や定義のすり合わせにも十分な時間を割く重要性を感じました。これにより、データの項目や取得環境などにも注意を払い、より確かな仮説設定ができると考えています。 仮説確保はなぜ? チームでプロジェクトを進める際には、結果以上に良い仮説設定が成功に直結することを改めて認識しました。そのため、検証プロセスに入る前に、仮説設定に十分な時間を確保するよう努めたいと思います。

データ・アナリティクス入門

思考プロセスで本質に迫る

プロセスの意味は? 今週は、一連の思考プロセスに沿って問題解決のステップを学びました。それぞれのステップで重要な点を復習する機会をいただき、事象を把握する際に、すぐに手法に飛びつくのではなく、しっかりとプロセスを踏むことが実は近道であると実感しました。迅速に本質へ近づくため、その手間を惜しまない姿勢を大切にしたいと感じています。 徹底の課題は? また、問題解決策にたどり着き「これを徹底しよう」と意気込んだ場面でも、大規模な職場においては徹底が困難であるという新たな課題に直面しました。この単科で学んだ内容を活かすためには、その後の徹底方法、すなわちどのようにして人が動くのかという視点も欠かせないと考えています。思考プロセスは数字の分析だけでなく、さまざまな状況に応用できる点が魅力的だと改めて感じました。 本質を追うには? 徹底ができていない現状(What)に対して、なぜ徹底できないのか(Why)をインタビューなどを通して探ることで、新たな気づきを得たいと思います。今後も、この思考プロセスを駆使し、問題の本質を追究していきたいと考えています。

リーダーシップ・キャリアビジョン入門

リーダーシップ向上のカギは傾聴力

能力と意識の方程式とは? 行動は「能力×意識」という方程式に基づいて成立するということを学びました。この方程式を考慮すると、どの要素が不足しているのかを見つけやすくなります。そして、その足りない部分を伸ばすことで、リーダーシップの質を向上させることができます。 傾聴力をなぜ重視する? 特に、能力の中では傾聴力が重要であると再認識しました。営業所のメンバーとの会議や意見交換、悩みの相談の場では、しっかりと相手の意見を聞くことを心がけたいと思います。自分の意見で解決しようとしがちな癖がありますが、相手の意見を聞くことで新しい考えや思いを知ることができ、それが目標達成において大事な要素となります。このため、相手の意見を受け入れることを意識していきます。 会議での意見の発散方法は? また、自分の意見を述べる前や後には、他のメンバーにも考えを尋ねるようにしています。これは会議でいう発散のフェーズに重点を置くことを意味します。その後で意見を取りまとめ、目標に向かうためのプロセスを明確にし、現場で挑戦していきたいと考えています。

マーケティング入門

売れない商品に価値を見出す法則

無意識を変える重要性は? 無意識に「何があったら良いか」や、「なぜ売れないのか」といったことを考える意識を持つことが重要だと感じました。ライブ授業で完全メニューのラインナップを考える際にも、なかなか頭が切り替わらず、何を提案するべきかが思い浮かびませんでした。そのため、日頃からの意識が大切であると実感しました。 売れない商品の価値は? 自社においても売れない商品がありますが、売れない時にそのものの価値だけを考えてしまいがちです。しかし、全く売れない場合や、モデルライフサイクルが古くなった時には、何を売り、誰に売るかといった基本的な点に立ち返り、価値を見せられているのかを考えることにも意味があると感じました。 魅せ方改善は可能? 売れない商品を目の前にした時、その価値だけでなく、魅せ方に何が違うのか(たとえば、CMやSNSを通じて行われたことや、口コミなど)を考え、顧客に価値が伝わっているのかを見直すことも面白いと感じました。この考え方は、危機感を持つ意味でも、新しい気付きが得られると考え、実践しています。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

データ・アナリティクス入門

視覚化で輝く数値のストーリー

平均値の限界は? 平均値は計算が容易で意味も通じやすいことからよく用いられますが、ばらつきの情報が考慮されていないため、正しい情報を得る上では限界があります。代表値だけではデータ全体を俯瞰し、妥当性を確認するのが難しいため、データのビジュアライズ化が重要だと感じます。 なぜ見せる工夫が必要? 受領したデータの全体像を把握するため、代表値の算出に加え、ビジュアライズ化を実施することにしています。普段はExcelを使用し、関数を活用して代表値を手軽に算出しているため、この作業の頻度は高いです。しかし、ビジュアライズ化は目的を踏まえた「見せ方」を検討する過程があるため、どうしても敬遠しがちです。そこで、この工程も積極的に実施するよう努めています。 効率化はどのように? また、代表値の算出を効率化するために、算出用の雛形シートを作成し、使い回せるように準備しておきます。ビジュアライズ化については、データ確認結果を部内で共有する際に、誰にでも説明しやすい資料作成を心がけています。

戦略思考入門

原体験が教える戦略の極意

どんな原体験が影響? 担当講師の原体験で語られた体育会系の経験談は、非常に納得できるものでした。一定の段階ではその手法が通用していたものの、マネジメントの重要性が増すと、視座が十分に上がらないことに気づかされました。また、あえて伝える内容を絞ること自体が戦略の一つであるという考え方にも大いに学びました。 どの戦略が伝わる? 戦略の立案においては、重要な内容をすべて盛り込もうとするあまり、情報が多すぎて本来のメッセージがうまく伝わらないというジレンマに直面しました。実際、何度かの質疑応答を経なければ意図が十分に伝わらない場面もあり、シンプルすぎず複雑すぎないバランスがいかに重要かを実感しました。 なぜ考え直すの? さらに、戦略を立案する過程で、自身の考えをアウトプットし、言語化する習慣の大切さに気づきました。一度考えた言葉をそのまま発信するだけでなく、「なぜそうしたのか」「それは何を意味するのか」を見直すことで、シンプルかつ洗練された表現を目指すようになりました。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

データ・アナリティクス入門

マイナスからプラスへ!学びの進化

手順の共有の意味は? 実務の中で、手順やロジックを言語化することが、他者との共通理解を深める上で大いに役立つと感じました。抽象度の高い課題を、what、why、howのステップを踏んで具体的な対策へ落とし込むプロセスは、非常に有効です。 どんな課題に挑む? 現在、私は「マイナスからゼロへ」そして「ゼロからプラスへ」という二つの課題に取り組んでいます。チーム内の共通理解を促進するため、整理した論点に今回学んだ方法論を適用し、共有することに力を入れています。 経験から得る信頼は? また、私は転職経験があり、外部の常識や経験を活かして自社の課題を指摘しています。しかし、その指摘ポイントが十分に共有されていない状況です。論点を一つ一つ明確に示し、なぜその取り組みが必要なのか、背景や問題点を含めたたたき台として解決策を提示することで、共通認識をより強固なものにしなければならないと感じています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

データ・アナリティクス入門

目的から逸れずに効率UP!分析のコツ

目的設定はなぜ重要? 目的と比較の設定は非常に重要です。特に他者に仕事を依頼する際は、これが鍵となります。分析においても、目的に沿った意味のある係数と、そうでないものを見極める必要があります。目的によってその意味は変わり、使い方次第では係数の有無も変わってきます。 自己分析で気をつける点は? 自己分析の際も、目的からぶれないことが重要であり、目的に応じた答えや提案が含まれるインサイトを得られるかを考慮する必要があります。チームに依頼する際も同様に、彼らの仕事が意味を持つよう、効率化できるポイントを設定します。 比較時に確認すべきことは? 何が目的なのかを明確に書き出し、何をどの観点から比較したいかを考慮します。また、目的から逸れそうになったら立ち返って確認することが大切です。比較がきちんと同じ条件下で行われているかも再度確認しなければなりません。

「意味 × なぜ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right