データ・アナリティクス入門

目的とデータがひらく未来

目的は何でしょうか? 今回の講義を通して、まず目的を明確にすることの大切さや、その目的に沿って適切な情報を集めること、そしてデータを加工し比較することで初めて分析が成立するという基本的な考え方を学びました。 難問の比較ってどう? また、難しいテーマの比較においては、直接的な比較だけでなく間接的なアプローチも可能であり、柔軟な考え方が求められると実感しました。特に、愛の価値の算出方法に触れた際は、自分の考えの枠を超える新たな視点に出会い、非常に勉強になりました。そして、これまで耳にしていた「Apple to Apple」という言葉の意味を実体験に基づいて理解することができ、当時の意図にハッとする瞬間がありました。加えて、どのデータが適切かという判断には個人差があることを実感し、さらなる経験の積み重ねが重要だと感じました。 学びはどう活かす? 今回の学びは、商品の販売企画やプロモーション活動にも役立つと考えています。実際、講義を受けた後からは、販売企画の場面で比較を意識するようになり、データ分析を通じて「新しいことがわかる楽しさ」を感じ始めています。 数字以外の視点は? さらに、来週からは数字以外の情報を分析する予定であり、どのような視点で分析を進めるのかが楽しみです。また、得られた情報を効果的に伝える方法についても興味があります。グラフや表、あるいは絵など、さまざまな手法がどのように利用されているのか、また絵を用いる場合にはどのようなアイデアが生み出されるのか、実際に皆さんのお話を聞いてみたいと思います。

クリティカルシンキング入門

伝えたいことを明確にし、わかりやすく!

日本語表現の重要性とは? 今回の学習を通して得たことをまとめると、次の点が重要だと感じました。 まず、表現する際には日本語が正しく使われているかに注意することが必要です。具体的には、主語と述語の繋がりが適切であるか、文章が冗長になっていないかを確認することが求められます。 ピラミッドストラクチャーの活用法は? 次に、ピラミッドストラクチャーを活用して、伝えたいことを明確にし、それを支える柱を立てることが重要です。この際、概念を対にして複数挙げ、その柱に対する理由づけを具体化することが効果的です。 日頃の業務において、自分の表現が冗長になることがあると感じていました。日本語が正しく使えているかは、普段の発言や資料作成時において常に意識しながら取り組んでいきたいと思います。 会議資料に活かす方法は? 会議での資料作成においても、ピラミッドストラクチャーを活用して、伝えるべきこと(結論・目的)に対して概念化しつつ、複数の柱を立てるよう意識します。そして、その柱に対する理由づけを具体化することが重要です。 効果的なプレゼン資料とは? プレゼン資料の作成に際しては、相手に伝えるべきこと(結論・目的)を明確にしたうえで、ピラミッドストラクチャーを作成し、そこで挙げた概念化された複数の柱を項とします。各項を基本的に1ページにまとめ、その内容を理由づけし、具体化することを心がけています。 これらの学びを日常の業務に取り入れ、より効果的なコミュニケーションを実現していきたいと考えています。

アカウンティング入門

家計で学ぶ!貸借対照表の基本理解

貸借の理解を深めるには? 普段、お金を借りる、資産を生み出すといった業務を行っていないため、貸借の観点でバランスが取れているかという意識が低い。そのため、PL(損益計算書)に比べてBS(貸借対照表)の理解を深めるにはもう少し時間がかかりそうです。流動資産や固定資産などの用語は業務でなんとなく聞くものの、それらの定義をしっかりとは理解できていなかったので、自分の言葉でもう一度整理したいと思います。 家計にBSを取り入れると? 一方で、PL同様にBSにおいても価値というものに立ち戻ってそれを踏まえて見ることが大事だという説明は、目から鱗でした。 まずは、自分の家計において貸借対照表を作ってみて、どのようになるのか確認してみたいと思いました。我が家の家計においてどこに投資するべきか、家族の大事にしたい価値を再度確認した上で見直してみると面白いかもしれません。 経理部との学びの場を持つ 仕事においては、経理部にサンプルをもらって勉強したいと思います。PLに比べると専門用語が増え、定義が私にとっては難しいものがいくつかあったので、じっくりと整理することから始めてみたいと思います。 夏休みの計画と今後の学び方 来週から夏休みなので、家計におけるBSを作ってみます。今週の動画はもう一度見直しながらノートに気づきを整理し、自分なりの説明を自分の言葉で入れてみる予定です。ビジネス経理が持っている特定部門のBSを見させてもらい、ファイナンス担当者の視点から見方をアドバイスしてもらうつもりです。

デザイン思考入門

試して見つけた、本当の気づき

プロトタイプの効果は? 新規事業開発の現場では、従来、テキストや紙芝居を用いてコンセプトや提供価値を磨く方法を意識していました。しかし、議論をより活性化させるために、あえてプロトタイプを作成する有用性を学びました。また、毎週のグループワークでのディスカッションを通じて得られる新たな気づきも非常に意義深いと感じています。 感情と真因の探究は? 今後は、自身が関わるサービス開発で次の2点を実践したいと考えています。まず、ユーザーとしての体験から得られる心理的変化に注目し、表面的なニーズだけでなく、感情面に踏み込むことで利用者の情動を捉えること。次に、顧客の悩みの奥に潜む思考や本能、その背景の制約条件を探ることで、根本的な課題や真因を見極めることです。デザイン思考においては、この2つのプロセスを徹底することが、結果的に発想や試作品作成の近道になると考えています。ただし、議論を進めるためのツールとしてプロトタイプは有効なケースもあるため、状況に応じて活用することが重要です。 アイデアはどう生む? また、アイデア発想のプロセスについても挑戦してみたいと思います。アイデアは、具体と抽象の深さ、多角的な視点、そして顧客視点の掛け合わせによって生まれるものです。基本的な流れとしては、現状の課題を洗い出し、KJ法で構造化し、課題を絞り込んだ上で、SCAMPER法などを用いてアイデアを発散。さらに抽象度を上げて再度発散させ、最終的に収束させるというプロセスを磨いていきたいと考えています。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

クリティカルシンキング入門

学びのこだわり、伝わる工夫

グラフ作成の基本は? グラフ作成時には、まずタイトル、単位、軸の原点を0から始めるといった基本事項を意識する必要があります。時間軸のデータは慣例通り縦のグラフを用い、X軸を基準とした折れ線グラフで傾向や変化、連続性が見えてくるように設定します。また、「何を伝えたいか」という目的に応じてグラフの形式を選ぶことが求められます。普段の業務でグラフを作る機会は少ないかもしれませんが、数字だけでなくTIPを意識して正しい表現方法を取り入れることが大切です。 フォント選びのポイントは? 文字表現については、注目してもらいたい点を過度に強調しすぎず、フォントや色の選択により印象を工夫することがポイントです。さらに、アイコンを補助的に用いることで理解が促進される効果もあります。特にパワーポイントのスライドを作成する際には、フォントの種類や色、アイコンの使い方に細部までこだわると良い印象を与えられるでしょう。 スライド作成の秘訣は? スライド作成時は、情報が出てくる順番に合わせて図表を配置し、事実とともにプレゼンのターゲットに合わせた「何を伝えたいか」を明確にする表現が重要です。帯グラフの幅から比較しやすい特徴を活かしたり、折れ線グラフと棒グラフを一つにまとめる工夫、または矢印などで強調する方法も効果的です。TIPを意識して丁寧に作成することで、見栄えの良いスライドが完成します。 これらのポイントを踏まえ、日々の業務やプレゼンテーションで説得力のある資料作りに役立てたいと思います。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

データ・アナリティクス入門

実務に直結!データ活用の学び

実務講義はどう感じる? 今週までの講義やグループワークを終え、本格的なデータ加工、代表値とビジュアル化、データ傾向の把握といった実務に直結する講義が始まりました。私自身、エクセルの基本理解が十分でなかったため、代表値や散らばりを用いてデータ傾向を確認する方法や、グループワークで触れたピボットテーブルやクエリを活用した作業効率化に関する気づきは、今後につながる貴重な学びとなりました。これまでの業務の進め方を見直す上でも、大変有意義な受講でした。 業務効率向上の秘訣は? 所属企業ではグループ店舗のデータ集計・分析や戦略提案を担当していますが、基本知識の不足から作業効率が悪く、長時間を要することが多く苦労していました。しかし、今回の学びを通じて、データの意味を正しくとらえる方法や、効率的な集計作業の進め方が理解できたため、すぐに実務に活かしながら、少しずつスキルを向上させていこうと考えています。 基本技術はどう磨く? さらに、グループワークを経て代表値や散らばりの重要性に加え、エクセルのピボットテーブル操作など、データ集計の基本技術の習得が急務であると実感しました。そのため、早速オンライン動画でエクセル操作(ピボットテーブル活用)のレクチャーを受け、本日以降はこれまで触れていなかった基本知識をさらに深めるとともに、データの傾向把握のために代表値や散らばりに注目した確認を行い、誤ったデータ解釈につながらないよう注意していこうと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

戦略思考入門

業務効率化の壁を打破する知恵

効率化って本当に必要? 業務の効率化については常に意識してきたものの、実際には不要だと感じながらも慣習的に行っていることが多いと気付きました。仲間内で議論していると、問題があると認識しつつも、自社の性質上、削減が難しい業務が存在するという現実があります。さらに、近年はコンプライアンス重視の体制により、余計な業務が加わってしまっていると感じています。 講義で何を学んだ? 今回の講義で学んだように、優先順位を明確にし、合理的な理由を示すことで、不要な業務を削減できるのではないかと思いました。 投資判断はどう見る? 私の業務は、ある事業への投資を技術的に判断することです。そのため、まずその事業が本当に必要かどうかを大局的に考え、どのようなリスクがあるかを洗い出し評価します。近年、多くの案件が持ち込まれる中、資金規模や評価にかかる工数だけでなく、案件の重要性や政治的意義など、多方面からの評価を通じて、事業の優先順位を決めた上で業務に取り組む必要性を強く感じています。 不要は本当に消える? なぜ、何を切るか、何をやめるかという基本的な議論があるにもかかわらず、不要な事業が減らないのか、疑問が残ります。ある書籍ではそれを「空気」と表現しているようですが、この「空気」をどうすれば入れ替えられるのか、また、成長著しい企業や海外の事例ではどのように対応しているのか、今後の課題として考えさせられます。

データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。

「表 × 基本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right