戦略思考入門

実践で磨く優先判断の秘密

フレームワークは何? 講義全体を通して、フレームワークはゴール設定の補助ツールであり、決して万能ではないと学びました。一方で、漠然とした問いに対しては、観点や仮説の解像度を高めるのに有効だと感じました。実践を通じて身につけるため、業務内で必要な場面を意識的に作り、実際に使ってみることを試みています。 優先順位はどう? また、ありたい姿として「優先順位の判断が的確な人」を目指しています。仕事もプライベートも、限られたリソースの中で成果を上げるためには、現状を客観的に把握することが不可欠だと考えています。 使い方は合ってる? フレームワークを有効に使うためには、まずは実際に使ってみることが重要だと思います。先輩の業務姿勢を見ると、直接の業務に結びつかない知識も広く浅く習得しており、自分も情報収集をより効率的に行える方法を模索していきたいと考えています。 戦略と経営知識は? さらに、優先順位の判断が的確な人になるためには、戦略思考に加えて経営の基礎知識も必要です。特に、他社との協業施策検討では戦略レベルの分析が求められるため、今後はアカウンティング分野の強化にも力を入れていくつもりです。 現状把握はどう? まずは、現状とゴールを大まかにイメージし、その上で現状をより明確に把握するためにフレームワークを用いて分析を行ってみます。業務に活用する前に、自分自身のキャリアのためにどのような分析が可能か、じっくりと時間をかけて考える予定です。 学びは伝わってる? 今後は、書籍を活用してアカウンティングの知識習得を進め、学んだ内容を周囲に共有することで自分のモチベーションを上げ、学びの定着にも努めていきたいと考えています。

アカウンティング入門

仮説が切り拓く未来のヒント

事業の意義はどう? オリエンタルランドを例に、B/Sの構造を読み解くという演習を通して、事業内容や提供価値に基づいた仮説の立て方を学びました。まずは、どのような事業を展開し、どのような価値を提供しているのかを整理。その上で、経費や資産の状況から、必要な支出や現有するリソースを考察しました。 分析結果は説得的? 全体として、事業内容や提供価値に即した仮説立てが非常に説得力があり、分析が的確に行われたと感じました。次回は、この分析結果を踏まえて、さらに具体的な行動計画に落とし込むと、知識の実践的な活用が一層深まるでしょう。 資金運営の課題は? また、実際の分析過程においては、非日常感の提供という点で、資産や経費の管理が徹底していることが強みとして浮かび上がりました。一方で、いずれの取り組みも大規模な資金を要するため、調達面での課題がある点も見受けられました。企業の事業形態や実態を十分に理解することが、より精度の高い仮説形成につながると再認識しました。 他社の検証はどう? さらに、他社の分析や情報収集においては、まず気になる企業の事業内容や提供価値について、思い描く仮説を立てることが重要です。その後、その仮説に基づいてどのようなP/LやB/Sが存在しうるかを考え、実際の数字と突き合わせることで、自分の仮説の妥当性を評価することができます。仮説が一致していれば自信につながり、もしずれている場合は、着目すべきポイントを学ぶ良い機会となるでしょう。 知識活用はどのように? この学びを今後のステップアップに役立てるためにも、得た知識の活用方法を具体的に考え、自己の分析スキルをさらに磨いていってください。

データ・アナリティクス入門

データ分析で見えてくる新しい視点

データ分析の基本概念とは? 今回の講座を通じて、データ分析のアプローチ方法や考え方を学ぶことができました。特に以下の点について多くの学びがありました。 まず、「分析とは比較である」という基本的な概念を理解しました。また、データ分析においては仮説思考が重要で、最初に仮説を立ててからデータを使ってその確からしさを確認するプロセスが大切であることを学びました。特に印象的だったのは、スポーツチームの例を通じて、単に打率ではなく得点貢献度に注目することでチームが勝つための分析方法を実践している点でした。 問題解決の枠組みは? さらに、問題解決のアプローチ方法として、「what、where、why、how」という枠組みを学びました。また、分析の視点としてインパクト、ギャップ、トレンド、ばらつき、パターンの五つの視点を持つことの重要性を認識しました。それぞれの視点に合わせたグラフの見せ方も習得しました。 今後の実践計画は? これらの学びを実務に反映させるべく、現在進めているマーケットプランの中で実践していきたいと思います。具体的には、仮説思考を取り入れてロジカルにフレームワークを組み立て、その仮説をデータで証明するために正しいグラフを選び、説得力のある資料を作成します。そのために、フレームワーク、ロジカルシンキング、グラフの見せ方を再度復習しました。 9月14日から9月16日にかけての期間に、これらの復習を行いました。そして、9月中には今回習ったことを営業組織にフィードバックし、アウトプットに向けての準備を進めます。これらの知識とスキルを、日常のマーケットプラン、アカウントプラン、計数管理、CS調査に役立てていきます。

マーケティング入門

アイデアと実例で実現する業務効率化

ヒット商品の秘訣は何? ヒット商品を生み出すには、ただ思いついたアイディアを無計画に実行してはいけないということを学びました。まずは、現在行っている事業に近い分野で強みを活かせるかを検討することが重要です。これまでの知識やノウハウを最大限に活用することが、成功への鍵だと理解しました。 どのようにペインポイントを転換する? 「ペインポイントを発見し、それをゲインポイントに転換する」こと、またそのためのアイディア出しが重要であると学びました。よくある消費者目線を忘れ、提供者側の視点になりがちであることも注意すべき点です。 Microsoft365の活用方法は? 私はバックオフィス業務を担当しているので、社内メンバーのペインポイントを見つけ、彼らのニーズを満たすための行動を取りたいと考えています。具体的な行動として、全社にMicrosoft365が導入されましたが、活用されている機能はまだ少ないです。業務量が多く時間が足りないという声が多く聞かれます。このニーズを満たすには、Microsoft365の機能を紹介し、活用を促進することで、ペインポイントを改善できると考えます。実際の業務をマーケティングとして捉え、学んだことを活用しようと思います。 実例で工数削減をどう示す? 実例を交えて工数削減の効果を示し、理解を深めてもらうことが大切です。ただ「便利です」「最新機能です」と声高に伝えても実行に移されません。多くの人が現状の仕事の流れに慣れており、不便さを感じていない可能性があります。しかし、Microsoft365の新機能を活用することで、業務がどれだけ効率化されるのかを「実例」として提案していくことが重要です。

戦略思考入門

ビジネスの本質を掘り下げ、実践する方法

体系的に理解できた? ビジネスの場では、単なる感覚に頼らずに、仕組みを体系的に理解し、その本質を見抜くことが重要です。このための考え方の要諦を学ぶことができました。 選択はなぜ必要? 特に重要だと感じた点は、選択の必要性です。顧客にとってのメリットを考えると、一部を捨てる選択も重要です。また、差別化についても学びました。差別化とは何か具体的な違いを顧客に訴え、選んでもらうことだと理解しました。さらに、規模の経済性が競争優位性に繋がるかどうかもしっかり検討する必要があります。特に、安易な多角化には注意が必要です。 現状把握できてる? 私の部署では、業務の効率化と高品質化が命題です。ただなんとなく業務を進めるのではなく、明確にゴールを設定し、現状を把握する「足元分析」を行い、常に自分の道程を自問する姿勢を持ち続けたいと思います。 行動はどう活かす? 学んだことを実際の行動に活かすために、「手を動かす」こととして、学んだフレームワークを手近な事例に当てはめて考えていきたいです。「口を動かす」こととしては、仲間と意見を共有し、発信することで知識を深めます。そして、「頭を動かす」こととしては、捨てるべきものや、そこに至った思考の過程を再確認し、自分の業務に活かせるかを考え続けます。 振り返りは継続する? これらの活動は講座が始まってから取り組んでいるもので、今後も続けていきます。具体的には、毎週何かしらのフレームワーク、例えばSWOT分析やPESTEL分析を学び、実際のケースで練習します。さらに、定期的に振り返りを行い、ノートに「今週学んだこと」や「改善すべき点」を記録し続けます。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

データ分析で広がる学びの可能性

問題解決のプロセスは? 解決策を導くためには、まず原因を洗い出し、プロセスに分解して問題に至るまでの過程を確認することが重要です。その過程で、どの部分で問題が発生しているのかを把握します。また、複数の選択肢を設け、その選択肢を根拠を持って絞り込むことが求められます。この際、決め打ちしないように心がけます。 判断基準とデータ収集のポイントは? 次に、判断基準を設け、重要度に基づいて順位づけを行います。分析と合わせ、仮説を立てながらデータを収集し、ABテストなどで仮説検証を並行して実施します。使われなければ知識は忘れてしまいますので、日常的に課題を捉え、原因を探索し、仮説を立てて解決策を考えることを意識することが大切です。 また、日々シミュレーションを意識的に行い、データをどうやって収集するかを考える癖をつけることも重要です。複雑なステップが関係する業務の改善策立案においては、プロセスを分解し、問題に至るまでの過程を丁寧に見直すことから始めるべきです。 複数解決策の評価方法は? 私自身、答えが一つに絞りがちな癖がありますが、複数の解決策を立て、それを判断基準に基づいて評価するステップを実行しようと思います。実行を急ぐあまり、ベターな一つの解決策で進めがちですが、その癖を直すことを目標に業務に当たります。 日常のシミュレーションをどう工夫する? 日々意識的に課題を発見し、シミュレーションを行うことを心がけ、有効なデータとデータ収集方法を考える癖をつけていきます。課題をプロセスに分解することで、本質的な課題へのアプローチに努め、仮説を実際にABテストなどで試すことを実施していきます。

クリティカルシンキング入門

思考を広げる!数字分解の新発見

数字をどう見捉える? 具体的なケーススタディを通じて、数字の分解やイシューの設定、メッセージの伝え方について学びました。数字を分解する際、特定の実例に引っ張られると、考えの幅が狭まることに気付きました。特に「観光」のイメージに縛られると、抽象度を上げる思考が難しくなりがちです。紙に書き出して共通点を探るなど、可視化する方法で考えるのが有効だと感じました。 見直しは本当に必要? また、イシューの設定では、他の数字を何度も確認しないと安心できない点が学びとして大きかったです。ひとつのイシューを見つけたとしても、「本当にそれで大丈夫か」「見落としていることはないか」を考え、数字の分解を見直すことを習慣にしたいと思いました。 チーム戦略はどうする? 現在リーダー役を務めているので、チームのメンバーや組織課題に向き合う際にこの知識を活用したいです。特に次年度のチーム戦略や目標を立てる際には、現状の組織課題をしっかりと把握し、イシューとして捉えた上で解決策を考えていくことが重要です。 抽象化の秘訣は? 抽象度を上げる思考は、身近な課題にも当てはまります。組織課題に取り組む際、他者から聞くチームのイメージや現在の業務に影響されて、思考の抽象度が上がりにくいことがあります。紙に書き出して抽象化する努力をしてみようと思います。また、イシュー設定に関しては、実務では分かりやすいイシューを見つけた時点で他の可能性を除外し、解決策を考えることが多いです。思考のプロセスを意識し、イシューを見つけた後にはそのイシューを再検討し、他の分解方法も試してみることを習慣化したいと考えています。

クリティカルシンキング入門

視野が広がる学びの旅

楽しさを実感した学び 学ぶことの楽しさを実感できました。これまで、物事を一つの視点からしか考えていないと気付かされました。例えば、病院についてのディスカッションでは、研究施設や避難所など、私の視野を超えた多様な視点があり、「すごいな〜」と感心しながら学ぶことができました。また、懇親会では慣れない場でも声をかけていただき、私の話を聞いてもらえて嬉しく、あっという間の時間でした。短い時間でしたが、とても充実した時間を過ごせそうです。 表現力を磨くために 私は表現することが苦手ですが、考えを整理し、ロジックツリーを使いながら可視化を進めていきたいと思います。これからも頑張りますので、よろしくお願いいたします。 知識を積み重ねる方法とは? 企画立案に役立つ知識を得ようと、多方面にわたり学びたいと考えています。私の所属する部署は営業推進で、フロントに近い部分ですが、業務を円滑に進めるためには、コンプライアンスや事務部門との連携が不可欠です。浅く広く学ぶことから始め、知識を積み重ねていきたいと思います。 弱点克服に向けて挑戦する 私は言語化が苦手で、ボキャブラリーが少ないと感じています。昨日学んだロジックツリーを活用し、日々テーマを決めて少しずつ作成し、翌日に見直すことを続けていきたいと思いました。できないことは何度も繰り返し訓練することで、少しずつ成長を感じられるかもしれません。過去には自分の弱点を避けて通ってきましたが、これからは向き合い、克服に努めたいと思います。皆さまの考え方を伺う中で多くを学び、とても楽しい時間でした。今後ともよろしくお願いいたします。

戦略思考入門

営業から学ぶ効果的な組織改革の道

売上での判断は正しい? 営業を担当していたときには、クライアントの優先順位を売上だけで判断していました。しかし、リソースの使用状況や応諾率の可能性、利益額といった観点を考慮していなかったことに気付きました。 リソースは足りるか? 現在、私はエデュケーションチームのリーダーとして活動していますが、組織には大きな課題が存在しています。この課題に対して適切な対応策を打つためには、今のリソースだけで足りるのか、何を捨ててでも取り組むべきなのかを議論する必要がありました。そこで、売上インパクト、応諾率、効果、リソースの使用、実行可能性、利益額といった観点でタスクの見直しが重要だと感じています. 育成課題はどこ? 現在のミッションは営業人材育成に特化していますが、より広い視野で階層別に考えを発展させるべきです。業績向上のために必要な人材像が現状どうなっているのかを分析し、育成の課題を知識、テクニカルスキル、ポータブルスキル、マインド、スタンスのどの部分にあるのかを特定することが求められます。そして、不要なタスクを捨て、優先すべき点を明確にすることで、限られたリソースの中で最大の効果を出す方法を模索したいです. 理想組織の実現は? 経営戦略の実現に必要な組織像を定量的および定性的に確認し、理想の組織における管理職やメンバーのあるべき人材像も同様に評価します。現状の組織と人材の状況を、業績などの定量軸とES調査などの定性軸で確認します。理想と現状のギャップを整理し、課題に対する改善策を考える際には、やめるべきタスクと併せて施策を立案することが必要です.

クリティカルシンキング入門

異なる視点で磨く伝え方の技術

交流で何を感じた? ①異なる職種や立場の方々との交流を通じた学びでは、社内では当たり前と思われる承認が得られない状況に直面しました。この経験から、自身の話し方や論理的な説明を工夫する重要性を意識しました。グループワークでは、論点を見直すための問いかけができたことも大きな収穫でした。背景として、前提知識が異なるためにフラットな視点で物事を見ることができたことも影響しています。 どのグラフが効果的? ②相手にわかりやすく情報を伝える方法については、社内であまりグラフを作成しなかったため、当初は体系化されていませんでした。しかし、学びを通じて折れ線グラフは推移を示すために、棒グラフは時系列で情報を見せるために有効であるといった具合に、体感的な見やすさを言語化することができました。 どの手順が有効? 効果的な情報の伝達には、「考える→情報を集める→再考する」という手順が大切です。具体的には、文章の目的や読み手、前提情報や懸念点を理解した上でメッセージを組み立てることが求められます。 グラフで何を伝える? また、グラフ作成は、説得や課題把握の一手段ですが、そこから何が言えるかを自分なりに言語化することが重要です。データを元に示唆を発見し、相手や自身を納得させるプロセスが欠かせません。 どの方法で振り返る? 情報の伝達にあたっては、自分が文章を作成する際だけでなく、他者の文章をチェックする機会でも、この学んだ手法を活用しています。プロジェクト完了後の振り返りにおいてもアンケート結果を分析し、最も見やすい形で伝えることに努めています。

デザイン思考入門

生成AIで顧客共感の新境地

どうしてペルソナが鍵? 生成AIのビジネス活用支援の立場から、生成AIの利用方法について考えました。自ら生成AIをどのように活用するかを検討し、実際の運用で示された課題を把握することは可能です。しかし、利用するお客様ごとに使用シーンや前提知識、目的が異なるため、彼らに共感し課題を正しく理解するには、ペルソナをしっかり定義し、その前提条件や目的、状況を想像して整理する必要があります。 顧客役割シミュレーションは? また、生成AIに顧客の役割を模倣してシミュレーションしてもらう手法も有効だと考えます。ペルソナで定義したユーザーとして課題を提示してもらうことで、要件定義のプロセスに新たな視点を加えることができるため、実践的な検討に大変役立ちました。 利用後の効果は何? 実際に利用してみると、生成AIからユーザー役として現実に即した質問が提起され、単なる想像にとどまらない網羅的な事前検討ができることが確認されました。従来、ユーザーを実際に巻き込む場合、コストがかかるという課題がありましたが、生成AIを用いることで低コストで実務に近いシミュレーションが可能となり、非常に参考になりました。 今後の展望はどう? 今後は、生成AIを活用してより具体的なユーザー視点からの課題提起やシミュレーションを実践し、顧客との共感を深める戦略に活かしていきたいと考えています。さらに、生成AIを使うことでペルソナの理解がどのように進むか、またそのシミュレーション結果をどのようにビジネス戦略に反映させるかについても、今後の課題として具体的に検討していく所存です。

「知識 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right