クリティカルシンキング入門

疑問をチャンスに変えた日々

課題洗い出しはどうする? 業務課題に取り組む際は、まず課題となるイシューを漏れなく洗い出すことが基本です。各イシューは疑問形で具体的に問いかけることで、本当に解決すべき問題が明確になります。また、一面的な経験則に頼らず、多角的な視点から解決策を検討することが求められます。特に、最初に手を付けるべき課題を明確に優先順位を付けることで、効率的な対応が可能となります。 伝え方と相談対応はどう? 顧客からの相談や業務上の課題に対しては、これまで学んだ正しい日本語の使い方や伝え方、そして図や表を活用したイメージしやすいドキュメント作成の技法を積極的に活用しています。各課題を順番に処理するのではなく、優先度を意識しながら対応すること、さらに対策を立てる際には自身の経験に引きずられず、必要に応じて他者の意見も積極的に取り入れている点が大きな特徴です。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

クリティカルシンキング入門

多角的視点で広がる学びの力

切り口の多様性は必要? 切り口が一つだけだと、偏った答えになる可能性があることがわかりました。しかし、複数の切り口を見つけるのは難しいとも感じました。自分が導きたい答えを得るために切り口を模索するという方法もあるのでは、と考えました。 実務での発見と応用 実務では、複数の業務を同時に行っているため、チームの弱点や強みを発見することに役立つと思います。今年の自分の目標の達成にも、多角的な視点での分析が重要だと考えています。 マインドの数値化は可能か? 昨年一年をかけて取り組んだプロジェクトでは、マインドを数値化するのは難しいと感じていました。しかし、異なる切り口を探して、数値化が可能でないか再考したいと思います。現在数値化されている部分についても、他の切り口がないか再検討し続けたいと考えています。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

クリティカルシンキング入門

グラフで魅せる伝え方の秘訣

グラフ選びは何が肝心? キーメッセージに合ったグラフ選びが大切です。まず、読んでもらうために、キーメッセージの工夫を重ねる必要があります。抽象的な内容ではなく、具体的なメッセージを用いて、上司や顧客に何を伝えたいかを明確にすることが求められます。 スライドの心得は? また、何のためのメッセージなのか、細部まで考えたうえで資料を作成することが重要です。作成する際には、本当にこのスライドで良いのか、読み手に分かりやすい文章になっているかを意識し、今後のアクションや示唆も資料に落とし込むように努めます。 日々の見直しはどう? 日々の業務においても、必ずキーメッセージを念頭に置いて文章や資料の作成を行います。どのスライドも、この内容で問題がないか、無駄な部分がないかを常に検討することを心がけています。

クリティカルシンキング入門

受講生の本音、実践の軌跡

主語と述語の関係は? 文章作成において、まず主語と述語の対応関係を明確にすることが非常に大切です。小説などでは表現の多様性が評価される一方、ビジネスの現場では状況を的確に伝えるために、この基本が欠かせません。主語と述語のずれが誤解を招くリスクを伴うため、常に正確な関係を意識して文章を組み立てる必要があります。 誰が原因を探る? さらに、どのような前後関係の中で誰がどのような問題に直面しているのか、その原因と対応策を明確に示すことが求められます。結論から述べた上で、原因や複数の対策を検討し、ピラミッドストラクチャーを活用して論理的に構造化することが重要です。このアプローチは、定例の1オン1や業務報告など、さまざまなシーンで思考を整理し、伝える内容を明確にするために非常に有効です。

データ・アナリティクス入門

業務の壁、ロジックツリーで突破

現状の課題は何? 現状の業務はマンパワーに依存しており、その結果としてメンバーが常に疲弊していると感じています。これまでいろいろ検討してきましたが、改めて状況を客観的に把握するため、今回学んだロジックツリーを用いて現状の課題を書き出そうと思いました。また、問題点が十分に認識されず、日々のルーチン業務に流されがちなため、what/where/why/howを意識し、積極的に問題提起を行いたいと考えています。 解決策はどう考える? すぐに業務に結び付けるためには訓練が必要だと感じています。そのため、教材で示されたコツや留意点を参考に、身近な問題解決にロジックツリーを活用する取り組みを始めます。さらに、解決の切り口となる項目をできるだけ多く洗い出すよう努めていきたいと思います。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

「業務 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right