戦略思考入門

差別化の鍵を握るアイデア探しの旅

アイデアの選び方は? 差別化のポイントとして学んだことは、まず「ありきたりのアイデアに飛びつかない」ことの重要性です。次に、自社の強みをしっかりと意識し、場合によっては外部の力を借りること。そして、ライバルをあまりにも意識しすぎないことも大切です。これに加えて、ポーターの3つの基本戦略やVRIO分析についても学ぶことができました。 他業界のアイデアはどう活かす? 他の業界から差別化のアイデアを取り入れることも一つの方法であるということが特に印象に残りました。ポーターの3つの基本戦略やVRIO分析は、事業計画の立案やM&A後のシナジー創出のための戦略を企画する際に役立ちそうです。こうしたフレームワークを活用することで、自社の現状やポジションを効果的に整理できると感じています。 これから事業計画の立案やM&A後の戦略を考える機会が多くあるため、今回学んだポーターの基本戦略やVRIO分析を積極的に活用しつつ、自社の現状を整理し、差別化のポイントを明確にして企画を立てたいと考えています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

アカウンティング入門

数字の裏側で見える経営の真実

利益と価値の関係は? コストを正しく理解することは、顧客に提供する価値を見極める上で重要です。利益獲得の状況は、利益額と利益率の両面から評価すべきです。たとえば、あるカフェビジネスのケースでは、ミノルとアキコがともに営業利益3%を実現していたものの、実際の金額には大きな差が見られました。 利益管理の難しさは? また、担当するポジションによっては、最終利益に至るまでの利益管理が求められる場合があります。しかし、外部からの評価はあくまで最終利益を基準として行われるため、この点を意識する必要があります。 競合分析のポイントは? 次に、競合他社の分析も重要です。まずは全体の動向を把握し、費用対売上高の効率性を中心に検証します。その際、マーケットシェアとの関連性にも注目することが望まれます。 損益比較のコツは? さらに、競合他社の損益計算書(P/L)を確認し、決算短信に記載されているビジネス概要のコメントを参考にしながら、自社のP/Lと比較してみることが効果的です。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

戦略思考入門

差別化で創るブルーオーシャン

孫氏の戦略はどう捉える? 孫氏の「戦いを略す」という戦略は、とても分かりやすく心に響きました。単に戦いを避けるのではなく、そのためにはさまざまな検討と対策が必要であることを実感しました。持続的な事業運営のためには、レッドオーシャンよりブルーオーシャンで生き残る戦略の方が成功確率が高いと理解し、そのブルーオーシャン状態を自ら創り出すことが戦略そのものと言えると感じました。さらに、他社との差別化もブルーオーシャン化の有効な手段の一つであると認識できました。この考え方に基づいて事業戦略を立案することが第一歩だと思います。 他社との差別化は何? これまで他社との差別化について深く考えたことがありませんでしたが、戦略を作る上で非常に重要な要素であると強く感じました。単に漠然とした差別化ではなく、どのようにブルーオーシャン化を可能にする差別化を実現するかを念頭に置く必要があります。まずは、他社と比較して一歩上の付加価値を追求するという意識を常に持つことが大切だと考えます。

データ・アナリティクス入門

データが導く、未来への一歩

平均の種類って? これまで、平均値の代表指標として単純平均や加重平均のみを使用してきましたが、今回、幾何平均や中央値という視点を学んだことで、分析の幅が広がったと実感しています。特に幾何平均や標準偏差については再度復習し、理解を深めていきたいと考えています。 Excelで相関は? また、実務で既に活用している散布図について、相関係数や決定係数をExcelで算出する方法を学びました。この手法によって、データに説得力が増し、意思決定を行う際のサポートになると感じています。 分析視点はどう? さらに、比較対象に応じて適切なグラフの選択方法も学んだため、今後の業務においてスムーズに活用し、より多くの知識を吸収していきたいと思います。とくに、プロジェクトの効果分析やプレゼンテーションの際、これまで感覚的に行っていた分析を、インパクト、ギャップ、トレンド、ばらつき、パターンという5つの視点から意識することで、より体系的なアプローチが可能になると感じています。

戦略思考入門

受講生が語る戦略のひととき

ターゲットの重要性は? 自社や競合の状況を整理し、まずはターゲットとなる顧客を明確に定めることが基本です。ターゲット顧客の視点で、どの施策が意味のあるものかを検討し、差別化すべき相手を意識することが重要です。 持続可能な戦略は? その上で、差別化のための施策案においては、実現可能性や持続性についても十分に考える必要があります。戦略の検討は、顧客ニーズに合わせた具体的なアプローチとなるよう心がけます。 ポジショニングは? また、戦略立案の際には、ポーターの基本戦略を活用してポジショニングを明確にし、VRIO分析を通じて自社の強みを活かしながら差別化を図ることが求められます。 実践する理由は? さらに、クライアントとの対話においては、ありきたりなアイデアではなく、今週学んだポイントを実践し、深く広く検討する姿勢が必要です。この経験を機に、これまで十分にできていなかった自社分析をしっかりと行い、今後の戦略策定に役立てていきたいと考えています。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

データ・アナリティクス入門

比較で拓く新たな視点

比較の価値って? 分析の際、最初に比較の視点が重要であると実感しました。私自身、比較に対して苦手意識がありましたが、実務を通して比較分析を実施するうちに、他者の意見が新たな視点を与えてくれることを学び、自分以外の考えを取り入れる意義を改めて認識しました。 情報分析の秘訣は? また、上司から課題解決のための情報分析を依頼されたときのプロセスも振り返りました。まず、分析の目的を明確にし、次に何と比較するかを検討します。データが少ない場合は割合で表し、表を作成した上で適切なグラフによって視覚的に表現します。その結果を客観的に評価し、必要であればさらに深堀りした分析を行うという流れです。 視点の工夫は? 最後の課題では、男女別や地域別といった切り口での分析が有効であると感じました。ただ、これらの視点に気づくまでに時間差が生じてしまいました。あらかじめスムーズにアイデアが浮かぶようになるためのコツがあれば、ぜひ教えていただきたいです。

戦略思考入門

フレームワークを活かして差をつける学び方

顧客視点ってどう考える? 施策を検討する際には、徹底して顧客の視点で考えることが大切であると感じました。また、広い視野を持つことが求められると共に、その施策が無理なく実現可能であり、差別化として持続可能であるかを意識したいと思います。 フレームワークはどう活用? 今回の動画で学んだフレームワークについては、以前から知っているものや使ったことがあるもの、馴染みのなかったものがありました。フレームワーク自体の説明に加えて、使用時のポイントや、陥りがちな悪い例も学ぶことができました。これらの知識を活かし、業務で施策を考える際には、まずフレームワークを使用することから始めたいと思います。 多忙中、どう実践する? 業務が多忙であっても流されず、来週中にはフレームワークに触れる機会を意識的に設けたいと思います。その際には、業務の隙間時間ではなく、充分な時間を確保し、動画を振り返りつつ正しくフレームワークを活用することを心掛けます。

データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。
AIコーチング導線バナー

「意識 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right