データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

クリティカルシンキング入門

振り返り文で学ぶ問題解決テクニック

物事を分解する利点は? 「物事を分解する」という手法は、複雑な問題や課題を整理し、本質を掴むために非常に有効だと感じました。分解することで得られる利点として、全体像の明確化、真実への気づき、主観や思い込みの排除、具体的なステップの可視化が挙げられます。これにより、行動に移しやすくなり、自信がつき、切り口が増え、無駄が減ることで、コミュニケーションも円滑になります。 IT業界での分解の活用法は? 私はIT業界で働いています。分解を効果的に活用する場面としては、システム障害時のトラブルシューティングがあります。アプリケーションエラーの要因や原因を細分化して判断します。また、要件定義やシステム設計では、顧客の要求を具体的に細分化し、それぞれの機能や動作について詳しく検討・具現化します。プロジェクト管理やコードレビューにおいても、工程やタスクを細分化して効率的に管理し、効果的なレビューを行います。 明確な目標設定の重要性は? 実践においては、明確な目標設定が重要です。例えば、障害対応や要件定義の工程で課題を意識し、発生した問題を分解して整理します。分解された要素の因果関係を確認し、特に障害対応時には優先順位の判断も必要です。また、仮説を立てる姿勢やツールの活用も有効です。こうしたプロセスを定期的に繰り返し、振り返りを行いながら、自分のスキルとして確実に身につけていきたいと思います。

データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

データ・アナリティクス入門

データで切り拓く問題解決の未来

データで課題をどう切り分ける? 問題解決のプロセスやロジックツリー、MECE、あるべき姿と現実のギャップを定量的に把握するなどの知識は、実際に活用する際には難しさを感じました。特に、データの観点から課題を切り分ける作業はやや複雑でした。マーケティングや事業計画など多様な視点が浮かぶ中で、データに基づいて論理的に整理する必要性を実感しました。 深まったMECE理解の意味は? 総評として、問題解決プロセスやMECEの理解が深まったことは良い成果です。データの視点で課題を切り分ける挑戦には大きな可能性があります。今後経験を積み重ねることで、さらに力をつけていくことが期待されます。 日常業務にどう活かす? 学んだ知識を実務で活かすために、日常業務での意識的な取り入れが重要です。データ活用の支援においては、問題解決のプロセスを意識し、ロジックツリーを用いて問題の分解や特定を進めます。また、アンケートの相談が多いことから、その目的とKPIの確認を行い、MECEを意識した取り組みが必要です。 具体的なデータ活用法は? データ活用のサポートでは、問題解決のプロセスやロジックツリーを確認し、相手との認識を合わせ、問題点を明確にします。問題のあるべき姿と現実のギャップを定量的に示し、解決策の検討を行います。アンケート項目の確認においても、MECEを意識して進めていきます。

クリティカルシンキング入門

学びを深める3つの鍵: 私のナノ単科体験

学びの振り返りで何を明確に? グロービス経営大学院のオンライン学習サービス「ナノ単科」を通じて、講座全体を振り返ることで、自分がどのような課題を抱えており、今後何をすべきかが明確になりました。特に、以下の3点が新しい学びと気づきとなり、課題解決のために継続して実行すべき決まり事として定めることができました。 1. 課題で何を問われているかを考えること 2. 課題の答えを出すために何を考えなければならないかをまず決めること 3. 自分が考えた道筋に抜け漏れがないかを客観視すること 業務での具体的な活用法は? どの業務においても、課題が与えられ、結果をアウトプットする必要があるため、これらのポイントは業務全般で活用できると感じました。具体的には、報告書を作成するときや、発表資料を準備するとき、メールの作成時、人に相談するとき、会議の際などがその例です。 実施すべきアプローチとは? 具体的なアプローチとしては、以下のように実施したいと思います。 1. 課題で何を問われているかを設定・共有してから、本題に入り解決策を考え始めること 2. 解決策を考える際には、直感的に思いつく方法以外の分解方法も検討すること 3. 課題の答えを出せたとき、そのまま採用するのではなく、アプローチの抜け漏れを客観的に評価すること これらの学びを活かし、今後の業務に生かしていきたいと思います。

データ・アナリティクス入門

問題解決のステップでビジネス力向上!

問題解決のステップとは? 問題を解決する際には、ステップごとに考えることが重要です。やみくもに案を出すのではなく、状況確認や原因特定、解決策の検討といった観点に分けて洗い出すことが求められます。問題解決には二つの方向性があります。現状をあるべき姿に戻すことと、望む姿へのギャップを埋めることです。このギャップを定量化することが鍵となります。 プロモーション戦略にロジックツリーを活用 MECEに考える際の分解方法として層別分解と変数分解が使われ、ロジックツリーを用いて問題を分解すると優先すべき課題が明確になりやすくなります。これを、来年度のマーケティングプロモーション戦略を立てる際に活用しようと考えています。 施策の振り返りとギャップの活用法 まず今年度のプロモーション施策を振り返り、現状とあるべき姿のギャップを見て原因を考えます。そして、来期のありたい姿を考え、それに向けたギャップをどのようにアプローチするかを検討します。その際、分析にロジックツリーを活用する予定です。 チームで行う効果的な振り返り メンバーそれぞれに現状のデータと理想の姿のデータを出してもらい、そのギャップを見てチームで理由を検討します。振り返りを行ったうえで、有効だった施策、継続すべき施策、止める施策を検討し整理します。そして、会社の方向性に合わせて来期の施策を練り上げようと考えています。

クリティカルシンキング入門

共感で切り拓く現場の課題解決

どう認識を合わせる? 課題は、見る人や見る角度によって変わるため、何を解決すべきかを正確に判断し、関係者全員がその認識を共有することが重要だと実感しました。また、時間が経つにつれて認識が薄れ、混乱が生じる可能性があるため、常に課題を再確認し、認識にズレが出ないよう努める必要があります。 導入の本質は? 私の業務は、新しい技術やソリューションを現場に導入することです。しかし、過去には「ソリューション導入」自体が目的化し、本来解決すべき課題や本質が曖昧になってしまったことが何度もありました。 問いの立て方は? 今回の問いの立て方は、これまでの経験を踏まえると非常に示唆に富むものでした。今後は、まず現場の課題を大局的に把握し、そこから各要素に分解していくアプローチで問いを設定していきたいと考えています。この方法により、本質的な課題解決につながると期待しています。 課題はどう可視化? まず、自分なりの現場での課題を、たとえ漠然としていても可視化します。その後、既存のフレームワークを活用して、課題を具体的な要素に分解していきます。 理解は届いてる? そして、その分解した内容を上司や同僚に提示し、課題の理解が共有できているかを確認します。理解が得られた段階で、適切なソリューションを検討し、具体的な実行内容を上司や同僚と協議して進めるようにしています。

クリティカルシンキング入門

問題解決の視点を変える新しいアプローチ

問題分析の新たな視点は? 問題を分析する際、私は分解して考えることが重要であると認識していました。しかし、まず全体をしっかり定義した上で、MECE(漏れなくダブりなく)を意識した分解方法を考慮することの重要性を理解しました。さらに、その切り口が適切であるかどうかを見直し、別の視点からアプローチすることの必要性も理解しました。 プロジェクトの収益化戦略とは? 担当部門の売上や利益を拡大する際には、プロジェクト別に社員一人当たりの売上や利益、平均単価を算出し、それぞれのプロジェクトを比較することで問題のあるプロジェクトを特定します。その上で、効率的な単価の引き上げや、社員とビジネスパートナーの入れ替え、もしくはプロジェクト継続を諦めてより収益性の高いプロジェクトにリソースを振り分けるという対策を導き出すことが可能になります。 部門の売上拡大にどう貢献する? 社員一人当たりの売上を向上させるために、社員とビジネスパートナーの入れ替えや単価アップの交渉の推進が有効です。ただし、業務知識を有する社員の配置換えは現場への負担も大きいため、十分に検討した上で実施することが求められます。また、社員のローテーションを可能にすることで、プロジェクトを離れる社員には新たなプロジェクトを担当させ、その際もビジネスパートナーを活用することで、部門全体の売上拡大につながると考えます。

クリティカルシンキング入門

データ分析で見つけた新たな視点と発見

データ加工の真実は? データの加工によって、見えてくる事実や印象は大きく変わるものです。「数字は嘘をつかないが、詐欺師は数字を使う」との言葉がありますが、まさにその意味を実感しました。情報は、どのように分解するかによって、判明する内容に差が出ます。ただし、最初から適切な区分けを定義することは難しく、仮説に基づいた検討になりがちです。そのため、区分けをできるだけ小さな単位で行い、グラフ化や計算によって傾向を見出すという方法が現実的です。 異軸の関係は? 一つの軸で明らかになった事実を他の軸と結びつける際には、それらの軸がどのような関係にあるのかを考慮する必要があります。全く異なる軸同士の場合、それらを組み合わせて四象限にするなどの工夫が求められます。 ログ分析で何が? 私は現在、自社サービスの顧客の利用状況をログで分析し、利用状況に問題がないか確認する工程に取り組んでいます。その結果に基づき、さらにARPU向上を提案しています。このデータ分析には、今回学んだ分解する観点を活用したいと考えています。 新データの可能性は? 先週、新しい利用状況データを取得できたため、来週にその分析を実施する予定です。この新しいデータは、これまでのものよりも詳細で、分析する軸が多岐にわたります。今回学んだ、複数の軸の関連性を考慮した事実抽出の手法が、大いに参考になりそうです。

アカウンティング入門

経営理念とPLを連動させる実例学習の魅力

アキコのカフェで学んだこととは? アキコのカフェ事例を通して、PLを活用してビジネスモデルや経営理念を浮き彫りにする方法を学びました。理念を維持しながら利益を上げることが重要であり、アキコのカフェの場合、手軽さや日常感がコンセプトです。そのため、値上げではなく、仕入れの原価調整や多くのお客様に来店してもらうための施策、回転率の向上などの手段が必要です。 PLを面白く学ぶには? これまでPLは無味乾燥な数字の羅列に思えましたが、学習を通じて「難しくなくて」「面白くて」を実感できるようになりました。 自社分析で何を考慮する? 自社の分析においては、経営理念に沿ったお金の使い方をしているかを検討し、今後の資金使用にも活用できることを確認しました。業界的には属人化しやすい面がありますが、社員を大切にすることがPLにも反映されているかを見極め、それをさらに他社との差別化のために投資していきたいと考えています。 学習時間をどう確保する? まずは定期的な学習時間の確保が必要です。平日は業務に追われることが多いので、週末の朝に学習時間を設ける習慣を作ることが重要です。それができたら平日にも学習時間を拡大します。具体的には、PLの分析とインプットを行います。同業他社や近隣業種のPLの分析、さらに優秀とされる企業のPLを比較し、経験値を増やして苦手意識を払拭していきます。

「活用 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right