クリティカルシンキング入門

問いで開く課題解決への扉

問いの立て方はどう? 問題が発生した際、問いの立て方によって真に解決すべき課題が異なり、解決策の方向性が決まってくることがよく理解できました。イシューとは何か、またイシューを設定して考えるとはどういうことかを知っていないと、問題の本質にたどり着けないということも実感しました。 問いが変える提案は? このアプローチは、私自身の業務における顧客の課題解決にも活用できると感じています。これまでユーザーの課題を聞き取りシステムを提案してきましたが、結局は活用されない機能が存在したこともありました。今後は、常に「問い」を立て、問題の本質を追求した上で提案していく必要があると考えています。 組織課題の見極めは? また、社内では組織の抱える課題を正確に見極め、その解決策を事業計画に反映させたいと思っています。まずは、自身の業務において、ユーザーの課題に対してすぐに解答を提示するのではなく、問いを設定してその内容が本質的なものかどうかを繰り返し吟味しながら、適切な提案を行うことが重要です。そして、そのプロセスをチームで共有し、全員が同じ方向に向かって取り組めるようチームビルディングに努めていきたいです。

クリティカルシンキング入門

多角的視点で課題発見!MECE活用術

項目分けの意味は? 意図的に項目を分けることで、問題が見つけやすくなると気付きました。特に、言葉の定義を明確にすること(例えば「子供」とは何を指すのか)が重要です。視点が多ければ多いほど、問題の発見が容易になり、解決策も増えてきます。しかしながら、日々の業務の慣れから、こうしたことを見落としてしまうと感じています。 経験に頼るリスクは? これまで、課題に対する解決策が自分の経験に偏っていることが多かったため、常に批判的思考を忘れず、「他に手はないだろうか?」と自問し続けたいと思っています。課題を特定する際も、経験に依存しがちなため、MECE(Mutually Exclusive, Collectively Exhaustive)を用いて視点を増やすことを意識しています。 数値分析の新発見は? PL(損益計算書)やBS(貸借対照表)を作成および分析する際には、経験に頼るだけでなく、MECEを用いて分解を行い、新たな洞察を得たいと思っています。また、新規施策を行う際にはターゲットの特定においてMECE分解と数値分析を活用し、数値的インパクトの大きい施策を立案し、実行に移していきたいです。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

クリティカルシンキング入門

問いを共有し、成功への最短距離へ

問いの意味は何? 「問いから始める、問いを残す、問いを共有する」ことの重要性を再認識しました。特に「問いを共有する」ことは、丁寧さが重要だと感じています。複数の人と業務を進める中で、たとえ正しい問いを見つけても、周囲が同じ問いを共有していなければ、議論が散乱してしまいます。そのため、問いを見つけた後は、相手にしっかり伝えることを意識したいと思います。 どんな局面で役立つ? 業務を遂行する上では、このアプローチはどの場面でも活用できると考えています。具体的には、準備段階からミーティング、最終提案のフェーズに至るまで、常に意識したいです。その際に重要だと感じる観点は以下の通りです。まず、的確に課題を把握すること。次に、解決策の要素を多面的に検討すること。そして、視覚化して効果的に伝えること。また、相手の視座を持ち、関係者を納得させることが重要です。 どうすれば成功する? これらのステップを繰り返し行うことを意識します。まず、グラフ制作のようにトライすることから始めると、多くの発見があります。上記のステップを反復して実行し、所要時間を短縮することで、最短距離で成功を目指したいと思います。

クリティカルシンキング入門

イシュー設定の重要性と技術活用法の探求

イシュー設定の重要性とは? イシューを設定することの重要さと難しさを実感しました。どのようなシチュエーションでイシューを設定するかによって、答えが大きく変わることを学びました。例えば、売上を上げるためのイシューにおいて、顧客の信頼を失っている時には価格を上げる決断は難しいですが、信頼を得ている時には価格を上げる選択も正しいと考えられます。状況をしっかりと分析し、適切にイシューを設定することが重要だと感じました。 技術の価値はどう測定する? 私たちの企業において技術の探索を行う際、技術の価値をピラミッドストラクチャーで分解し、その活用法を探ります。さらに、業界動向などの情報を収集し、以前は不採用としたイシューが現在適切であるかを再検討し、業務タスクに反映させます。また、上長に相談し、論理的な考えができているかフィードバックをもらうよう心がけています。 業務の方向性はどう深める? 日々の業務をピラミッドストラクチャーで分解し、その変化に応じてイシューを見直すことから始めています。上長とこのピラミッドストラクチャーを共有し、議論を通じて業務の方向性を組織全体で深めるよう取り組んでいます。

データ・アナリティクス入門

問題解決を極める!広告業での実践ノウハウ

プロセス分解が鍵となる? 原因の探求について学びました。特に、問題の原因を探る方法としてプロセス分解が有効であることを知りました。問題の箇所を絞るためには、プロセスを詳しく分析し、仮説を立て、その仮説を検証することが重要です。このプロセスには、文データ分析や仮説の検証などのステップが含まれます。 広告の効果検証とは? 広告業に携わる私にとって、こうした方法論は日常的に行っていることですが、改めて体系的に学ぶことの意義を感じました。特に、広告の効果検証においてはPDCAサイクルを用い、データ分析を通じて仮説を立て、その仮説を検証するプロセスが連続的に行われます。この週に学んだ内容は、日々の業務におけるステップのヌケモレの確認に活用していきたいと思います。 仮説の重要性を再確認? データに触れることを日常的に行い、データを一度集めただけで満足せず、常に仮説をブラッシュアップし続けることが必要です。同時に、データを継続的に収集し、これらを繰り返し行うことで課題解決ソリューションに繋げることができます。また、A/Bテストも広告業務で実施しており、学んだ内容を実践に活かしていくつもりです。

クリティカルシンキング入門

視覚化でプレゼン資料が変わる予感

視覚化の意味は何? 今回のテーマである視覚化について学んだことで、新たな視点を得ることができました。これまであまり意識してこなかった視覚化ですが、メッセージの視覚化、グラフや文字表現の工夫、そしてスライドを丁寧に作成することで、資料がより効果的で理解しやすいものになることを実感しました。 学びをどう活かす? 学んだことを仕事に活かす方法についても考えました。具体的には、勉強会や研究会の案内文や資料作成時にアイキャッチを意識することです。これまではあまり意識していませんでしたが、今後は積極的に取り入れていきたいと思います。また、資料作成にも今回学んだ手法を活用できそうです。さらに、定期的に書いている5000文字程度の執筆にも、ビジネスライティングの手法を取り入れ、より質の高い文章を目指したいと考えています。 どう共有すべき? そして、まずは毎月開催している業務関連の研究会で、今回の学びをメンバーと共有したいと思います。案内文の作成やスライドの見せ方など、実践できることが多く、次回からすぐに活用できそうです。また、この内容を振り返り、若手社員と共有する時間を作りたいと思います。

データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

データ・アナリティクス入門

思考の質を高めるMECEとMICE活用法

MECEの考え方とは? MECEの考え方は、切り口を重複させずに漏れなく設定することが重要です。どのような切り口が最適かを判断するためには、高い感度が求められます。これに関しては、分析の経験を積むことや、多方面からの意見を聞くことも必要と感じています。 ロジックツリーの活用法 ロジックツリーについては、論理的思考を活用することで、適切な判断ができるようになります。 MICEの活用には何が必要? MICEの考え方は、実務に役立ちそうで、特に顧客分析など日常的な業務での活用チャンスが多いです。「重複なく漏れなく」を実現することはその通りと感じつつも、切り口の設定によって重複を避けることが難しい場合もあり、その点をどのように克服するかが課題だと考えています。 BI分析へのMICEの導入 業務で作成しているBI分析において、MICEの軸を取り入れることにしました。切り口については様々な角度から実施し、どの分析が効果的であるかを検討します。また、ロジックツリーについては、既にパイプライン分析で似たことを行っていますが、改めてロジックツリーを用いた分析も進めてみようと思います。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

クリティカルシンキング入門

問いから始める!企画成功の秘訣

問いの目的は何ですか? 問いを発すること、問いを立て続けること、そしてそれを共有すること。この3つを業務において実践することが重要だと考えています。単に問いを発するだけでは、途中で迷子になってしまう可能性があるため、問いを立て続けなければなりません。そして、アウトプットすることで問いが適切か確認し、共有することが重要であると理解しました。 企画目的はどう決める? 私は、グループ会社に情報を発信する企画業務において、この「問い」を活用できると考えています。企画を始める際には、まず立てる目的が重要です。私はこの目的を「問い」を活用して立てたいと考えています。企画の方向性やゴールを上司とすり合わせる際に役立つと感じています。 ゴール設定はどうする? また、任されている企画についても、どこにゴールや目的を設定して進めるかを決める際に、このアプローチを活用します。設定したゴールや目的を納得してもらえるように説明できるよう、まずは自身で「問い」から始め、問いを立て続け、自分自身で納得できる問いと答えを求めています。それができたら、次はそれを共有するというアプローチをとる予定です。

データ・アナリティクス入門

プロセス分解で見つける問題解決のヒント

原因を見極めるには? ビジネスにおいて、問題の「正しい」原因を特定することはほぼ不可能と言えます。様々な要因が複雑に絡み合っているため、正解を見つけるのは難しいものの、「こんな方向性で問題に取り組めばよいかもしれない」という目途は立つこともあります。問題の原因を明らかにする方法としては、プロセスに分解するアプローチが有効です。 クリック率不足の理由は? 特にWEB手続きを推進する業務では、プロセスで分けてクリック率やコンバージョン率を見ていく考え方がすぐに役立ちそうです。クリック率が低い箇所には、どのように誘導を行うかを検討する必要があります。また、手続き完了率が低い箇所については、説明の文言がわかりにくいのか、コールセンターに電話したいと思われる要因があるのかなど、問題の原因を深掘りする必要があります。 ABテストで改善は? これらのプロセスで分解して得られた情報を基に、クリック率やコンバージョン率が低い部分にはABテストを行い、より良い施策を立てます。さらに、その結果を活用して、データに基づく意思決定を行ったり、他者を説得する材料とすることが重要です。

「活用 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right