マーケティング入門

ターゲット分析で見つける売上戦略のカギ

ターゲット見極めの重要性とは? ターゲットを見極めることの重要性を学びました。例えば、特定の企業の事例では、同じ商品でもターゲットを変えることで売上や利益が伸びることを学びました。この過程を行うには、自社の強みと弱みを正確に分析し、それに基づき市場を分析して、強みを活かしながら差別化できる戦略を練る必要があります。また、参入しやすい市場には競合が多いことも考慮すべきです。 誰に売るべきかを定めるには? バックオフィス業務の中で自部署で考案したプログラムや商品を社内外で利用してもらうためには、誰に売るべきかを明確にしたうえで作成する必要があると感じました。企画や提案を行う際にもターゲットを明確にし、それに基づいた提案をするように心がけます。 強みと弱みの分析は何をもたらす? そこで、自社や自部署、自分自身の強みと弱みを一度明確にしてみたいと思いました。強みと弱みを把握することで、どのように売り込んでいくべきか、また足りないものは何かが明確になり、それが課題解決につながると感じています。

クリティカルシンキング入門

売上低迷を打破する分解力

売上不振、原因は? 売上が伸び悩むという大きな課題に直面した際、まずは状況を分解して解像度を上げ、どこにアプローチすべきかを見極めることが重要です。こうした問いかけを通じ、イシューを明確にしていきます。 切り口はどう選ぶ? 状況の分解にはMECEの手法を採用しています。どの切り口で分解するかによって状況の捉え方は大きく変わるため、切り口は非常に重要です。現状では、層別分解、変数分解、プロセス分解、さらにはwhen・who・howといった複数の視点からアプローチし、最適な切り口を探るよう努めています。 数字管理はどう? また、業績目標として売上などの数字が設定され、その結果で評価される一方で、これまで十分に数字の分析が行われていなかった点に気付きました。分析を試みると、必要な基礎データが十分に蓄積されていないことも明らかになりました。今後は、今年度の結果を詳細に分析し、管理や収集が不十分な数字については、確実に取得できる施策を検討していきたいと考えています。

クリティカルシンキング入門

問題解決のための視座を磨く学び

課題の意識とは? 課題を意識し、情報を捉えていくことで、問題点を素早く明確にとらえたことが印象に残っている。 今週までに学んだ内容を一つ一つ実行することで、何が問題かを具体的に把握し、その結果具体的な解決策に辿り着くことができた。 課題解決のステップ 現状を認識し、課題を設定して解決することができる。例えば、売上を増やすためや、業界の傾向を把握するために必要な情報を正確に把握し、不足している情報を見つけることができた。また、仮説を立てやすくなり、素早い調査や解決策に到達する助けとなった。 多面的に問題を捉える方法 課題に取り組む際には、関係する相手の捉え方を意識し、ズレが無いよう確認して進めていきたい。課題を達成するためには、多面的に問題を捉え、解決策を考えていくことが重要だと感じた。 また、情報を新たに調べる際には、目的を意識し、逸れないように気をつける必要がある。手段を考える時には、その手段が目的に適っているかを常に意識することが大切だ。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

クリティカルシンキング入門

具体的問いで未来を創る

優先課題は何ですか? まず、何かにすぐ反応するのではなく、まずは取り組むべき課題―イシュー―を明確に設定することの大切さを改めて感じました。その際、イシューは抽象的なものではなく、具体的な問いに落とし込み、関係者全員で共有することが重要です。 事例で検証した? 実際、ある外部の事例を参考にする中で、設定したイシューが目的に適合しているかを再検証しながら進める必要性を実感しました。この考え方は、社内研修のテーマ設定にも通じるものがあり、単に一般的なスキル習得方法を模索するのではなく、企業の売上向上という明確な目標に基づいて、どういった人材が必要であり、現状のどの部分に課題があるのかを把握した上で計画を立てるべきだと考えています。 議論はどう整理? さらに、ミーティングにおいて議論が迷走しがちな点に気づきました。今後は、イシューをしっかりと設定し、共有するとともに、常にその解決策を意識する姿勢を持って議論を進めたいと思います。

アカウンティング入門

数字で見える!経営の新たな視点

損益計算書の基本的な読み解き方を学ぶ 損益計算書の基本的な読み解き方を学び、これまでの『営業利益・利益率』だけでなく、経常利益や当期純利益なども比較しながら、会社経営全体の状況を理解することができました。 サプライヤ分析で何を理解する? この知識を活かして、業務上でサプライヤ分析を行いたいと考えています。具体的には、担当するサプライヤのP/L分析を通じて、事業構造をより深く理解していきます。分析においては、売上規模、営業利益、営業外利益・費用、経常利益、当期純利益といった項目ごとに詳細に読み解いていくつもりです。 数字から何を創造する? さらに、分析力を身につけることで、数字から事業の特徴や課題を創造できるようになりたいと考えています。競業他社や自社、さらにはサプライヤのP/Lを比較分析し、それぞれの特徴を把握することで、研究開発に力を入れているか、営業外費用がかかりすぎているかなどの仮説を立てる習慣をつけていきたいです。

クリティカルシンキング入門

問いの質が未来を変える瞬間

本質課題を見極める? 「Issueを定める」ことの重要性を学び、まずは解決策を考える前に本質的な課題を見極める思考の大切さを実感しました。問題を無闇に追いかけるのではなく、最初に「問いの質を高める」ことで、分析や施策の方向性が大きく変わることを体感しています。 資料改善の工夫は? また、資料改善の演習を通して、情報の優先順位づけや読み手の知りたい点に応える構成、さらにはグラフの選択や文字量の最適化といった視覚的工夫が説得力を大幅に向上させることを感じました。営業現場への分析・提案資料作成、売上や収益改善プロジェクトの課題整理、ルートオペレーション改善や訪問頻度の最適化、さらには会議でのファシリテーションなど、多岐にわたる実践を通じて貴重な経験を積んでいます。 判断力はどう鍛える? これからは、データに基づいた判断、伝わりやすい形への整理、そして相手を動かすストーリー作りの力を、さらに継続的に磨いていきたいと考えています。

データ・アナリティクス入門

悩みを力に変える仮説の魔法

どんな仮説を作る? 普段は問題意識や論点の着目はできるものの、その先の進め方に悩むことがあり、課題から仮説につなげるのに苦手意識を抱いていました。しかし、3Cや4Pを活用することで仮説の立て方を理解でき、今後はより具体性のある仮説を構築できるよう努めたいと感じています。 新たなデータはどう? また、これまでは既存のデータだけで答えを導く方法に頼っていたため、仮説の裏付けとして新たなデータを収集する発想がなかったことに気づかされました。今後は情報が偏らないよう注意しながら、必要なデータを積極的に取りにいく姿勢を身につけたいと思います。 どう説得力を出す? 売上に関しても、なぜこのような結果になったのか説明が十分でなかったため、まずは結論を支える仮説を立て、その裏付けとなるデータを取りに行くことで、より説得力のある説明ができると感じました。普段から問題意識を持つことで仮説の具体性が増し、分析の視野が広がると実感しています。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。
AIコーチング導線バナー

「売上 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right