クリティカルシンキング入門

グラフで魅せる!納得の資料作成術

グラフ選びはどう? 伝えることを視覚化する際には、まずグラフの種類が目的に合っているか確認することが重要です。それぞれの目的に適したグラフを選ぶために、事前に調べて最適なものを選ぶように心掛けましょう。 文字装飾の狙いは? また、文字装飾は狙いと意図を持って行うことが大切です。強調したい部分が的確に強調されているか、伝えたいイメージに合った色が使われているかを再確認したいです。スライドを作成する際には、まず「言いたいことは何か」「どこに注目してほしいのか」を考慮し、効果的な配置や強調を工夫したいです。読む人の目線を意識し、一目でメッセージが伝わるような強調を意図的に使いこなしましょう。 体制変更の説得力は? こうした視覚化、装飾、配置や強調の技術を、来年度の体制変更に向けた資料作成に活用したいと考えています。体制変更には複数のステークホルダーが関与するため、その意図や目的を深く理解してもらい、説得力を感じてもらうことが重要です。そのため、ステークホルダーごとに異なる立場や状況を考慮しながら、明確なメッセージを伝えられるように準備したいです。 伝えたい内容はどう? まずは伝えたいメッセージをシンプルにまとめ、そのメッセージをもとに文章を作成します。それを基に必要な情報を盛り込み、視覚的にも理解しやすくなるよう、いくつかをグラフ化します。メッセージごとにスライドを作成し、その際には配置や強調を工夫して、一目でメッセージが伝わるかどうかを確認するつもりです。

データ・アナリティクス入門

仮説とデータが照らす成功の道

データ収集の手法は何? まず、データの収集方法について整理します。既存のデータを確認する場合は、手持ちの情報や一般に公開されているデータ、あるいはパートナー企業が保有しているデータを活用します。一方で、新たにデータを集める手段としては、アンケート調査やインタビューが挙げられます。特にインタビューは、背景を丁寧に確認できる反面、拘束時間や費用がかかる点に注意が必要です。 仮説設定はどう考える? 次に、仮説について考えます。仮説とは、ある論点に対して立てる仮の答えや、まだ明確でない事項についての一時的な見解を指します。たとえば、ある事業の成功は難しいとする結論の仮説と、具体的な問題点を洗い出して解決策を検討する問題解決の仮説があります。結論の仮説は、計画やプロジェクトを始める際に初めに立て、それが思うように進まなかった場合に問題解決の仮説を用いることで軌道修正を行います。 仮説検証はどのように? また、仮説は検証マインドの向上や説得力を強める上で重要です。日常的に市場や競合などの状況証拠を集め、論理的に分析することで、より精度の高い仮説が立てられます。こうしたプロセスは、計画のスピードアップや行動の精度向上にも寄与します。 情報の言語化はなぜ大切? 最後に、普段から問題意識を持って状況を把握し、得た情報を具体的かつ明瞭に言語化することが大切です。興味を持った点にアンテナを張り、現象の背景を分析する習慣は、論理的な思考力とコミュニケーション能力の向上に役立ちます。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

仮説で紡ぐデータの物語

分析で何が分かる? 本日の講義では、「分析とデータの関係」「データの種類」「データ分析で大切なプロセス」という3点を新たに学びました。分析目的を明確に設定し、仮説を立てた上で様々なデータを検証することが非常に重要だと感じました。目的が曖昧なままだと、分析ニーズに対し誤った結論を導く懸念があるため、職場だけでなく人間関係や恋愛の場面でも同じ考えが当てはまると思います。 受講生はどう感じる? また、講義中には他の受講生の方々から、データを分析する理由や扱うデータの種類について意見を伺う機会がありました。その中で、各々の環境や状況によって分析の目的や手段が異なるという点を実感し、本来の分析の定義を再確認できたのが印象的でした。今後は、職場の仲間にも本日学んだ内容を的確に伝えられるよう努めたいと思います。 なぜ分析重視? さらに、受講生全員が各自の理由でデータ分析を必要としているという共通点に気づき、非常に心強く感じました。今回学んだプロセスを活かし、今後のBI分析やデータの可視化作業に取り組む際には、まず分析目的と仮説を明確にすることを心がけたいと考えています。 部署連携の意義は? また、各部署とのヒアリングやニーズ調査を通して、求められる情報分析と可視化を準備することも重要だと感じました。私自身、新たな職場での取り組みとして、近々導入予定のシステムを活用するために、まずはデータの整理と分析方法についてしっかりと学び、理解を深める必要があると実感しています。

戦略思考入門

固定費見直しで高まるインパクト

実践演習で発見した課題は? 実践演習を通じて私が学んだのは、例えば規模の経済性の意味を知識として理解しているだけでは、それを実際に活用することは困難だということです。活用するためには、その本質的な意味をしっかり理解し、自社の状況を正確に把握して初めて適用可能になります。また、商品やサービスを理解する際には視野が狭くなりがちなので、定量的な資料などの客観的な情報を集めることが重要です。 コスト削減と提案の実行計画は? 「わかったつもり」で物事を進めたり結論を出してしまう危険性は常に存在するため、本質的な意味を確認する必要性を強く感じました。また、現状の部門では固定費の削減が可能と考えています。具体的には、不要な固定費の見直しを行い、インパクトのある提案をしたいと思います。さらに、範囲の経済性を高めるためにも、例えば評価制度の見直しや顧客接点を全社で共有できる仕組みの導入も考慮したいと思います。 マクロの動向をどう捉えるべきか? 個人としては、政治・経済・社会・技術革新といったマクロの動向が、自社業界や自社にどう影響を与えるかを常に意識しておくことが重要だと感じました。現在、社内インフラの一部である電話やFAXの運用変更を進めることで固定費削減のインパクトを高めたいと考えています。また、顧客接点管理として、名刺管理サービスのオプション機能の検討も行いたいです。さらに、学んだことを活かして複数の業界研究を行い、高い視座を持ち続けるよう積極的に取り組んでいます。

データ・アナリティクス入門

実験と観察で見つける自分の一歩

検証方法の違いは? 過去の学習では、「データをつくって検証するアプローチ」(実験科学的)と「データを取得して検証するアプローチ」(社会科学的)の二種類に整理していました。しかし、デジタル領域の発展により、社会科学的なアプローチにも実験科学的手法が導入可能となり、ABテストが実施できるようになりました。いずれの方法も最終的な目的は「最善の行動をとること」であり、状況に応じて観測による検証と実験による検証の有効なステージを意識することが重要です。 現場での検証は? 現状の業務では、実験による仮説検証が難しいケースが多いですが、人事分野ではトライアルとして人事制度の導入が行われることがあります。また、業務改善ツールの試験導入時に導入群と非導入群に分けることで、ABテストのような検証手法が活用される可能性もあります。一方、ある情報発信においては、2通りの作成が現実的な工数を超えることから、デジタル技術を活用する方法が望ましいと考えられます。 原因検証はどう? 原因探索において重要なのは、単にABテストを行うことではなく、原因仮説を体系的に(MECE)導出し、それぞれを迅速に検証するプロセスです。たとえば、特性要因図や5 Why分析を用いて複数の原因仮説を立て、適切な方法でスピーディーに検証していくことが求められます。特に人事分野では、複数の要因が絡むため、一つの真因に固執せず、各要因の寄与を考慮しながら柔軟に仮説検証を進めることが大切です。

デザイン思考入門

あなたも気づく新授業の扉

講義終了の感想は? 前期の講義終了後、学生アンケートの結果が教員にフィードバックされ、講義改善に生かされる仕組みがあることを改めて実感しました。ゼミの学生からも率直な意見が求められる中、今回の講義を通じて暗黙知の視点の大切さに気づき、複数の教員に授業見学をお願いするに至りました。 主体的授業の課題は? これまでは、学生が主体的に考える授業を目指し、講義形式をできるだけ避けるよう努めてきました。しかし、学生の受講態度や教員の講義手法を観察する中で、自分に不足している視点が多いこと、そして現場には根本的な課題やニーズが多く存在することを痛感しました。 現場で何を学ぶ? 課題の明確化のため、まずは現場に出向き、実際の行動や習慣を観察することが重要だと感じました。観察では、意識されにくいユーザーのニーズや行動の癖を捉え、インタビューではユーザーが自覚している経験や知識を言語化するという違いがあります。 定性分析の効果は? また、定性分析を進める中で、KJ法や付箋を利用した方法を取り入れ、情報の整理やグループ化を行うことの有用性を学びました。具体的には、問題の本質を捉えること、得られた洞察を整理・可視化すること、そしてユーザーの状況や課題に対する解決策の提案を通じた顧客課題説の作成がポイントとなります。 今後の改善策は? 最後に、今後も常にユーザー中心の視点を維持し、検証と改善を重ねる姿勢が必要であることを強く感じました。

アカウンティング入門

バランスシートで未来を読む

資金活用の意味は? 今週は、資金の使い道や事業への投資の適切さについて学びました。特に、ある視点から企業のバランスシート(B/S)を通して経営者の意図を読み解き、資産の有効活用や安全性に関する考察を深めることができました。固定資産と純資産のバランスが企業の安全性にどのように影響するかを理解し、B/Sに経営者の将来ビジョンが反映されている点を学ぶことで、投資判断の基礎知識を一層強固なものにできたと感じています。 比較検討の要点は? また、業務においては、投資先企業と自社のバランスシートを比較検討する中で、良い点と改善点を洗い出すことの重要性を実感しました。これにより、投資先企業の財務状況を総合的に把握し、投資判断の精度を高めることが可能になると考えています。 成長戦略はどう? さらに、投資先企業の成長を支援するための具体的な戦略の立案や、自社の投資戦略改善へのフィードバックの獲得にも取り組むことができそうです。最終的には、投資先企業の成長が自社の利益にもつながる相乗効果を目指していくというビジョンが明確になりました。 継続的な検証は? 決算書やファイナンス資料を活用し、投資先企業と自社のバランスシートを継続的に分析する中で、良い点や改善点を具体的に把握することができました。これらの情報を基に、定期的なモニタリングと必要に応じた戦略の修正を行うことで、投資判断の質をさらに向上させ、企業全体の成長に寄与できると感じました。

クリティカルシンキング入門

受講生の声でわかるナノ単科体験

表現方法は正しい? 同じ情報でも、視覚的な表現方法によって相手の理解度は大きく変化します。過度な装飾は情報をかえってわかりにくくする恐れがあるため、相手に適した表現方法を選ぶことが大切です。たとえば、メッセージとその内容の整合性を保つこと、相手の目線や思考の流れに沿った表現を心がけること、そして必要に応じてグラフなどの適切なビジュアルツールを利用することが挙げられます。 読者を惹きつける? 現代は情報があふれる時代です。相手の興味を引き、最後まで読んでもらえるような文章構成にするためには、状況に合わせたタイトルやアイキャッチとなるリード文の工夫が求められます。これは、クライアント向けの提案や報告資料を作成する際に特に重要です。 情報は厳選されてる? また、資料作成にあたっては、相手の理解度に合わせた表現方法を自分だけでなく同僚とも共有し、協力して改善していく姿勢が必要です。クライアント目線では情報が過多になっている可能性があるため、伝えたいメッセージに必要な情報だけを厳選し、不要なものをそぎ落とすことを意識します。 レビューは十分? さらに、クライアントに資料を提示する前には、必ず社内でレビュー会を実施し、第三者の視点からわかりやすさをチェックできる体制を整えています。もし相手が期待通りに行動しなかった場合も、その原因を相手に求めず、自身の表現方法を改善するための振り返りを行うことが重要だと考えています。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

戦略思考入門

学びの視点を広げる環境分析の力

目標達成の秘訣は? 目標を効率的に達成するためには何をすべきなのか、この問いへの答えを導くにはどのような流れで考えていくべきかを、今回の講義で学んだように思います。まず、今起きている事象の本質を見極めることが必要であり、そのためにはKSFを特定することが求められます。 視野拡大のコツは? 広い視点や高い視座で情報を収集し整理することで、全体像を把握することが重要です。これにより、大局を捉え、視野を広げて考えることが可能になります。ただし、自分の観点だけに頼ると見落としや偏りが生じてしまいます。そのため、フレームワークが非常に有用なツールとして役立ちます。フレームワークは単に埋めるだけではなく、各要素の整合性が取れていることが大切です。 環境変化の見極めは? 今回学んだ環境分析は、自分の業務において製品や技術の進化の方向性を見出したり、組織施策の考案に活用できると考えています。特に、自分が見えていない外部環境の変化が業界や製品に大きな影響を与える可能性についての話が印象に残りました。このような状況は、自業務でも起こり得ると考えており、外部環境分析に取り組むことの重要性を感じています。 実践で理解深める? 自業務における製品や技術、組織を対象に、フレームワークを活用して環境分析を進めていきたいと考えています。フレームワークの使用方法を理解するだけではなく、実践を通じて理解を深めることが必要だと感じています。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

「状況 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right