クリティカルシンキング入門

問題解決に向けた視点の広げ方を学ぶ旅

問題をどう分解する? 解決したい問題を分解するためには、主観的な視点だけでは全体を把握することは難しいと感じています。特に対人関係の問題に関しては、自分の視点だけでなく、相手や第三者からの視点も考慮する必要があります。人は自分の考え方に偏りがちであり、考えやすい方向から物事を考える傾向があります。 提案の裏付けはどう探す? 現時点では、問題に対して効果的な提案をするのは難しいと考えていますが、相手や第三者の視点を意識し、広い視座と視野を持ってやや俯瞰的に見ることで、予想外の提案ができる可能性があります。しかし、その提案を裏付ける根拠の探し方がまだわかりません。 第三者の視点をどう養う? 利害関係がないと仮定した場合、どのような案が考えられるかを大量に書き出し、第三者の視点を養う練習をしてみようと思います。また、共通の問題について職場の同僚の意見を聞き、その内容を記録し、その方の考え方の偏りを見つけ出し、どの視点から考えているのかを分析してみることにします。それによって、自分自身も異なる視点を持ち出せるか試してみたいと考えています。

戦略思考入門

実践で磨く!経営戦略の切り札

理論と実践のギャップは何か? 総合演習を通じて、座学で学んだことを実践することの難しさを改めて感じました。理論的には理解しているつもりでも、実際のケースに適用しようとすると上手くいかないことがあります。例えば、タクシー会社のケースではPEST分析を試みましたが、そのスケールの大きさからこのケースには適していないと感じました。その結果、もやもやとした感覚が残りました。 分析を活用する方法とは? 現在、私は出向中の現地法人において市場環境を調査し、分析を進めています。そして、これに基づいた明確な経営戦略や営業戦略の立案が有効であると考えています。また、SI事業に関わっている関係で、規模の経済をどのように活用するかについて再考し、企業の利益体質を強化したいと思っています。 効果的な戦略立案に向けて すでにVRIO分析を行ってその有用性を実感しましたので、今後の経営戦略や営業戦略の立案には3C分析やSWOT分析を実務に活用したいと考えています。現在、会議用の資料を作成中であり、これらの分析手法を直近の実務で是非活かしたいと思っています。

クリティカルシンキング入門

イシューを極める論理の道

今の問いの意味は? イシューとは、今ここで答えを出すべき問いのことであり、問いが何であるかを常に意識し、組織全体でその方向性を共有できるよう努める必要があります。 具体化はどう行う? イシューの特定は、問いを具体的な形に落とし込み、一貫して保持することが基本です。また、ピラミッド・ストラクチャーを用いる場合、まずイシューを明確にしてから、論理の枠組みを考え、主張を適切な根拠で支えるというステップが不可欠です。 問題と対応策は? 担当プロジェクトで問題が発生した際には、まずイシューを特定し、その問題に対してぶれず対応策を検討したいと考えています。同様に、事業計画の立案時にも、目標実現に向けた問題点を洗い出し、解決策を提示する上で非常に効果的だと思います。 納得できる資料は? さらに、問題点を徹底的に洗い出し、要素分解や数値分析を実施することで、相手が納得しやすい見やすい資料を作成することが重要です。また、部下や上司、顧客との打ち合わせの際には、目的である問いを明確にし、議論がぶれないよう意識することが大切だと感じています。

データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

データ・アナリティクス入門

複数仮説で説得力アップの秘密

仮説検証の重要性は? ビジネスにおいて、仮説を立て検証することの重要性を実感しました。今回の学びでは、ひとつの仮説だけでなく、複数の仮説を立案し、その中から最も有効なものを選ぶプロセスが、偏りのない分析につながることを理解できました。また、3C分析や4P分析の演習を通して、具体的な仮説の立て方を練習する良い機会となりました。 経験の反応をどう見る? これまでにも仮説を提示した経験はありましたが、過去の経験では「それはあくまであなたの考えに過ぎない」という反応を受けたため、仮説自体の有効性に疑問を持っていました。これは、プレゼン相手の反応や自身の検証不足が原因と考えています。今後は、仮説を立てた後の検証作業にも、より一層力を入れて取り組んでいきたいと思います。 3C分析の効果は? さらに、実務において3C分析を用いた経験から、このフレームワークが多くの人を説得するために非常に効果的であると感じています。近い将来も、売上情報の分析にフレームワークを活用し、より多くの方に迅速に納得いただける方法を模索していきたいと考えています。

クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

戦略思考入門

最短距離で進む成功メソッド

ゴール達成の基本は? 現在地からゴールへ最短最速で進むための手段として、①~④の順番で物事を整理する方法が有効であると学びました。まず、各ステップで利用するフレームワークとその活用方法を把握することがゴール達成の基本であると感じました。 整理方法のポイントは? 具体的には、①「視野を広げて整合性を取る」、②その上で違い(差別化)を見出す、③得られた情報を基に選択する、④そして選択した情報から本質をとらえる、という流れで整理を進めます。 PDCAで何が学べる? さらに、この方法を確実に身につけるためには、PDCAサイクルを繰り返すことが大切です。①学んだ知識を実践に活かし、②うまくいかない体験を経験し、③失敗の原因を分析、④知識不足であれば新たな知識を得る、またはフレームワークの使いどころを学んだ上で、⑤再び実践に活用するというプロセスを実施します。 AI活用の効果は? また、勉学のためにAIを活用されている方がいらっしゃれば、どのような方法で活用され、どのような効果が得られているのかも教えていただけると幸いです。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

データ・アナリティクス入門

仮説が映す未来への挑戦

仮説はどう説得力増す? データ分析において、仮説を立てることは説得力の向上に大変重要な要素だと実感しました。過去、現在、将来といった各目的に合わせて、結論や問題解決といった違いがある中で、仮説の活用は説得力を高めるだけでなく、自身の仕事に対する興味や関心を引き上げる効果もあると学びました。また、仮説を用いる際には、その精度を高め、迅速に検証を進めることが求められます。 報告はどのように変化? 自身の分析結果を報告する際、従来は仮説が正しいことを説明することを重視してきました。ですが、必ずしも直接的な正当性の説明にとどまらず、仮説自体の説得力をさらに高めることで、より充実した報告ができると感じるようになりました。今後は、この仮説とデータの活用方法を意識して実践していきたいと思います。 検証はなぜ時間かかる? 一方で、仮説の検証には予想以上に時間がかかることが多く、深い分析や検証が十分に行えていない現状もあります。他の参加者がどのように仮説検証を進め、時間管理や分析の精度を向上させているのかをぜひ伺いたいと思います。

戦略思考入門

知識から行動へ、戦略の軌跡

戦略の基本はどう? 戦略の根本を学び、最短かつ最速でゴールへ到達するための考え方を身につけました。とりあえず行動を起こすのではなく、実際に取り組むかどうかを判断するため、ビジネスフレームワークを用いて戦略を練る重要性を理解しました。 実践で何が掴める? また、「分かる」状態から「できる」状態へと変えるプロセスについて、さまざまな角度から学ぶことができました。知識を具体的な行動に結びつける方法も、実践を通して体得しました。 集客戦略はどうだ? この学びは、クライアント向けに集客効果のあるイベントを企画立案・運営する際に非常に役立ちます。たとえば、企画の際に差別化や独自性、実行すべきか否か、顧客層の明確化やニーズの分析など、様々な視点を整理する一助となりました。 差別化の秘訣は? 具体的には、依頼された手作りのマルシェ企画運営において、ターゲット、イベント内容、キャッチコピーなど類似した要素が多い中で、どのように差別化を図るかを検討する際、フレームワークを活用して全体を可視化し、論理的に整理する手法を実践しました。
AIコーチング導線バナー

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right