データ・アナリティクス入門

仮説思考で成果を引き出す方法を学んで

仮説思考をどう浸透させる? 今回の学びで、仮説とは何か、その明確な答えと種類について理解を深めることができました。これにより、今後同僚に仮説思考を浸透させる際に非常に役立つ知見を得られました。 データ収集の重要性とは? 特に印象に残ったのは、仮説を検証する際には都合の良いデータだけでなく、そうでないデータも集めることの重要性です。これは当たり前のことですが、自分の仮説を成立させるために都合の良いデータを集めがちであることに気づかされました。また、仮説を用いて社内外のステークホルダーを説得するには、多くの状況証拠を集めて分析することの重要性を再認識しました。 行動を深める仮説活用法 私は仮説をもって行動することの重要性を感じています。失敗しても「なぜ失敗したのか」を検証しやすくなるためです。今週の学習では、仮説を正しく用いることで説得力が増し、行動のスピードと精度も上がるという点に感銘を受けました。この学びを次週以降の学習でさらに深めたいと思っています。 成功体験に頼らないためには? 仮説の重要性やその価値を同僚に伝え、仮説思考を普及させることで、事業部の政策決定や担当者の行動が効率化されることを期待しています。過去の成功体験に依存する傾向がある事業部では、なぜ成功したのか、そして今も通用するのかを検証せずに同じ施策を繰り返しがちです。これは「問題解決の仮説」ができていない証と考えます。仮説思考の重要性を学んだので、これまでの取り組みを再考したいと思っています。 キャンペーン効果の再評価を 具体的には、事業部が定期的に行うキャンペーンやインセンティブについて、その効果を費用面だけでなく当時の外部環境も踏まえて検証しようと思います。これまでは、仲の良い同僚や上司と問題提起を行い理解を得られていましたが、それを全体に普及させることはできていませんでした。次週以降の具体的な方法を適用するための準備として、多様なデータを集めることから始めようと思います。その際、都合の悪いデータも取得することを忘れずに行いたいです。この週の気づきを早速実務に反映していきたいと思います。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

ロジックで広がる学びの扉

MECEの意味は? MECE(ミーシー)とは、Mutually Exclusive and Collectively Exhaustiveの頭文字をとった言葉で、情報を漏れなく、ダブりなく整理する考え方です。この考え方は、多角的な問題分析や意思決定の際に、体系的に物事を捉えるための基盤となります。 ロジックの本質は? ロジックツリーは、複雑な問題や課題を階層ごとに分解し、問題の本質を明確にするためのフレームワークです。原因分析や解決策の立案、さらには意思決定プロセスにおいて、整理された視点を提供し、効率的なアプローチをサポートしてくれます。また、英語では「A Logic Tree」と表現され、複雑な事象を小さく分解することで全体像を把握しやすくしてくれる役割を果たしています。 SNS目的は何? 具体的にSNSプロモーションの計画においてこの手法がどのように活用されるかというと、まず中心となる目的、例えばエンゲージメントの向上やサイトへの誘導、フォロワーの増加などを明確に設定します。次に、その目的を達成するための主要戦略を大きく整理します。ここでは、コンテンツの質と種類、ターゲットとなるユーザー層、投稿のタイミングや方法などの要素が検討されます。 戦略の具体策は? さらに、各戦略を具体的なアクションプランに落とし込みます。たとえば、コンテンツ戦略では掲載する投稿の形式(画像、動画、テキスト)やテーマ、投稿頻度などが挙げられ、ターゲット戦略では、狙う世代やコミュニティとの交流方法を明確にします。そして、配信戦略についても、投稿の最適な時間帯や利用するプラットフォーム、必要に応じた広告の活用法などを細分化して整理します。 効果はどう評価? 最終的に、実行に移した各施策の成果を週ごとや月ごとに評価し、反応の良いコンテンツを強化しながら戦略の見直しやアップデートを行うことで、効果的なプロモーション計画が完成します。こうしたプロセスを通じて、ロジックツリーはSNSプロモーションの行動計画をより具体的かつ体系的に策定するための強力なツールとなります。

クリティカルシンキング入門

問い続ける力でクリティカルシンキングを極める

どうして問いは大切? 上長が6月に交代して以来、「問いは?」と常に問われる機会が増えました。なぜ「問い」が重視されるのか当初は理解できなかったのですが、クリティカルシンキングがその背景にあることを講義を通じて理解しました。この講義を受けることで、クリティカルシンキングを身につけ、事業、ビジネス、私生活全般で活用していくために、特に「3つの姿勢」を意識することが重要であると認識しました。 どうして姿勢が大事? まず、一つ目は「目的は何かを常に意識する」ことです。次に、「自他に“思考のクセ”があることを前提に考える」こと。特にこの二点目は、慣れや習慣も影響していると考え、常に意識して取り組む必要があります。そして最後に「問い続ける」ことです。 なぜ経営で問う? 私は経営企画の仕事でクリティカルシンキングが必須のスキルであると感じています。業務の中で、事業環境や3C分析といったフレームワークを用いた調査・分析においても、クリティカルシンキングを用いることで、内容に深みを持たせることが可能です。また、経営層への提案や承認を得るための資料作成においても、短時間で理解と納得を得るためにロジカルシンキングやクリティカルシンキングを活用できると考えます。特に経営層は費用対効果や投資対効果に注目する傾向があるため、その効果を問い続けるストーリーを論理的に構築することで、納得を得られるのではないかと思います。 どんな問いが響く? 日常業務の提案書や稟議書の作成においても「3つの姿勢」を意識し、思考力を高めることが可能です。また、私生活でも「なぜこの商品が売れているのか?」「なぜこの店が人気なのか?」といった問いを持ち続けることが思考力を高めるきっかけになります。加えて、思考のクセが年齢とともに固定化していると自覚する部分もあるため、社員や知人、友人とコミュニケーションを取り、広くアイデアや情報を集めることを心がけたいと思います。そして、上長からの業務依頼に対しても、その背景や目的を常に問いかけ、業務を効率的に進める意識と姿勢を持ち続けたいと考えています。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

戦略思考入門

戦略思考で拓く未来

会議で気づくポイントは? 物事の本質を見極め、目標達成に必要な打ち手をシステマティックに考える大局観とバランスの重要性を改めて実感しました。会議の場面では、誰が何に対して語っているかを明確にし、抜け落ちる観点がないかを俯瞰する意識が大切です。 分析して何を得る? また、マーケティングの基本フレームワークである3C分析、SWOT分析、PEST分析、バリューチェーン分析を活用し、自社の課題を多角的かつ具体的に洗い出すことの必要性を認識しました。短期的な成果と長期的なプラス効果とのトレードオフを踏まえ、ベターな選択肢を見極める姿勢が求められます。 分析比較の見どころは? 具体的な3C分析では、【顧客】としては従業員規模が小さく、特定の施策が十分に取り入れられていない点、【競合】としては戦略コンサルタントや大手金融チームの存在を踏まえ、【自社】では高価格帯でフルカバレッジを実現し、内定決定率が高い点が挙げられます。一方、SWOT分析においては、高価格帯や専門性、内定決定率、育成力が強みとされる一方、マッチングの効率性やスピード、自社採用のプロセス管理、マネジャーのスキルに改善の余地があることが示されています。機会としては人材の流動性やダイレクトリクルーティング、世界経済の変化、生成AIの進展が考えられ、脅威としては生成AIやAIを活用したエージェントの台頭が挙げられます。 未来予測の鍵は? さらに、上場している大手エージェントの中期経営計画や統合報告書などを生成AIで分析し、どのような3C分析やSWOT分析、バリューチェーン分析が行われているかを検証することが、今後の自社の取り組むべき課題を明確にする上で有益です。特に、ダイレクトリクルーティングや大手企業による社内転職が台頭した場合、5年後にどのような影響が生じるかを具体的に分析し、今後のプランニングに活かす必要があります。 計画の着実性は? このように、今後も全体を俯瞰しながら、具体的なアクションプランを策定して着実に実行していくことが重要だと感じています。

戦略思考入門

振り返りから広がる戦略の世界

戦略の本質とは? マイケル・ポーターの戦略論では、他社と同じことを単に効率的に行うのではなく、他社とは異なる価値を提供することの重要性が説かれています。こうした視点は、企業が独自の強みを追求する際に大きな示唆となりました。 5フォース分析の意味は? 業界環境を分析するためのフレームワークとしては、まず5フォース分析が挙げられます。これは、既存の競合、新規参入の可能性、代替品の脅威、買い手の交渉力、供給者の交渉力という5つの要因を通して、業界の収益性や脅威を見極めるための有効な手法です。 SWOTとPESTは何? 次に、SWOT分析によって、内部環境の強みと弱み、そして外部環境の機会と脅威を整理することができます。この分析は、企業がどの方向に向かうべきか、またどのような課題を解決する必要があるかを明確にする上で役立ちました。同時に、PEST分析を通じて、政治・法規制、経済・市場の動向、社会・文化や人口動態、さらに技術革新といったマクロ環境を整然と把握できたのも大きな収穫です。 3CとVRIOの効果は? さらに、3C分析により、顧客、競合、自社の視点から戦略を考える機会となりました。これにより、どのような価値をどの顧客に届けるべきか、また競合との差別化をどのように図るかが明確になりました。加えて、VRIO分析では、自社のリソースが経済的な価値を生み出し、希少であり、模倣困難かどうか、そして組織として活かせるかを評価し、持続的な競争優位に結びつく条件を確認できました。 計画への応用はどう? 中期経営計画への応用についても考察を深めました。具体的には、まずPEST分析でマクロなトレンドを把握し、5フォース分析で業界の収益性や脅威を整理します。その後、SWOTやVRIOで内部環境を総合的に見直し、3C分析で市場視点を加えることで、戦略の方向性を検討していきます。そして、短期から長期にわたる数値目標や重点投資分野、改善分野を明示しながら、実行可能な戦略として中期経営計画に落とし込む方法が示されました。
AIコーチング導線バナー

「分析 × 効率」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right