データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

戦略思考入門

戦略思考で描く理想の未来

戦略思考はどう始める? 戦略思考とは、理想の自分や得たい結果、なりたい姿を実現するために、明確な目標を設定することです。そのためには、現在地である自分から、目標を達成した自分への道のりを描く必要があります。資源は有限であるため、時間や労力を無駄にしないよう、最速かつ最短で到達する方法を考えることが重要です。つまり、理想の自分を描き、現在の自分に必要なものと不要なものを取捨選択して行動に移すことが戦略思考といえます。 部署の目標はどう決める? 私が所属する部署はバックオフィスです。ここでの目標は新規業務の拡大と新規事業への参入です。業務や事業において目標が明確でないと、何を努力すべきかが分からず、行動に迷うことがあります。どの業務を拡大するのか、どんな事業に参入するのか、細かく決められていないときは、何が必要で不要かを判断しづらくなります。このため、目標を立てることは不可欠であり、それが意識付けや意思決定、そしてモチベーションを支える重要な柱となります。 議論はどう広がる? 個人や部署の目標を設定すると、建設的な議論が生まれ、必要な学習や資源の確保といった様々な思考が展開されます。その結果、チームとして目標に向かって進むための計画を立てることができます。 戦略習慣は何が鍵? 戦略的思考を習慣化し、体得するためには以下の行動を継続することが大切です。まず、仕事やプライベートなど何事もゴールを定める習慣を身につけること。そして、ゴールまでに必要なことや不要なことを分析する習慣を持つことです。分析の結果から最良の計画を立て、実行から得た学びを次回に活かすことも重要です。また、様々な経験を通じて自分の得意・不得意を見極め、独自性を育む自己啓発も必要です。これらを一人で行うのではなく、多様な情報源から得た情報を活用してブラッシュアップを続けることも大切です。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

戦略思考入門

戦略的思考を身につけるコツ

戦略的思考は何? 戦略的思考とは、目標を明確に定め、その目標までの道のりを逆算し、最短・最速で到達するための考え方や意思決定法です。言い換えれば、できるだけ早く効率よく目的や目標を実現する方法とも言えます。戦略は大局的かつ長期的な目的や方針を指し、それに対して戦術は局地的で短期的な手段を意味します。 最小労力で成果は? 時間は有限です。そのため、最小限の労力で最大・最速の成果を求めることは非常に重要です。このためには、「やるべきこと」と「やらなくてもいいこと」をしっかりと選別する必要があります。そして、企業や事業が持続的な優位性を保つために「独自性」を持つことも大切です。 新規計画の鍵は? 新規業務においては、長期的な目標設定と、それを達成するための逆算による実行計画が鍵となります。この計画は、他者に理解してもらうための資料作成やプレゼンに活用できます。 目標修正はどう? 既存業務においても、大局的な目標を常にリマインドし、状況に応じた実行計画を修正することが求められます。現状を分析し、業務内容の必要性を見極めた上で、他者への説得やプレゼンに活かすことが可能です。 生活目標はどう? 私生活においては、適切なゴール設定を行う癖をつけることで、さまざまな状況における成功体験を増やすことができます。これにより、他者とのコミュニケーションにおいても、共感や参加を得やすくなるでしょう。 目標再考はどう? 無意識に自分流で行っていた目標設定や逆算についても懐疑的になり、長期的視点で適切な目標設定ができているかを考える時間を持つことが重要です。その上で目標達成までのルートを考え、「必要/不要」を判断し、より早く効率的な方法を検討します。さらに、「自分らしさ」を加えることができないか、一度考えてみることも有益です。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

データ・アナリティクス入門

挑むデータ、拓く未来

データで信頼築ける? データが少ない状況では、医者の診断も検討はずれになりがちです。そのため、血液検査や各種データの収集、統計や原則に基づいた仮説の設定、そして一定期間の経過観察と検証を重ねることが求められます。こうした一連のプロセスは、日常生活の延長線上にある行為とも言え、直感に頼るのではなく、データを根拠とした理論的な意思決定に楽しさとやりがいを感じています。 どう伝えるのが良い? 日本の人口のごく一部がクリスチャンであり、その中でも特定の宗教団体に所属する会員はさらに限られています。残りの多くの人々に対して、回復された福音をどのように伝えるかという大きな課題に取り組んでいます。SNSやインターネット、テレビ、新聞、雑誌、口コミ、広告トラック、アドバルーンなど、さまざまなメディアを駆使し、目標達成の手法を模索中です。 伝わりにくいのは? もし、ひとりの会員が教会のことを知らない多数の人々に対して、漏れなく情報を伝えられたなら、その印象は全体に広がるでしょう。しかし、伝達だけではなく、クリック率やコンバージョン率といった指標を通じて、実際に人々の生活に喜びをもたらす変化を実現するまでには、段階的にその数が絞られていくのも事実です。それでも、たとえひとりのためであっても、自分のデータ分析が役に立つのなら、人生を賭ける覚悟で取り組むべきだと感じています。この講座と出会い、周囲から良い影響を受けられていることに感謝しています。 成果の極意は何? 毎週、成果を最大化するためのアイデアを考える時間を意識的に持ちたいと思います。インスピレーションが降りることを期待しながら、今週はABテストを実施してみようと考えています。データと真摯に向き合いながら、突破口を見つけ、進むべき道を探し続けたいです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

データ・アナリティクス入門

ロジックツリーで解決策が見えた!

問題解決の基本ステップは? 問題解決は段階的に考えることが重要です。まずは「What」として、何が問題なのかを明確にし、あるべき姿と現状を把握し、これについて周囲と合意を取ります。「Where」では問題がどこにあるのかを特定し、「Why」ではなぜその問題が起きているのかを分析します。そして「How」では、問題をどのように解決するかを考えます。 ロジックツリーで何が変わる? ロジックツリー(MECE:もれなく・だぶりなく)は、問題を解決する際のWhere、Why、Howの各段階で有効に活用できることがわかりました。これを様々なシーンで使えるように、もっと積極的に取り入れていきたいと考えています。 問題をどう分解するか? 問題を分解する方法には、層別分解と変数分解(掛け算)の2つがあります。これまで意識して使っていなかったので、状況に応じてこれらの方法をうまく引き出せるようにしたいです。 共通認識をどう持つ? 計画やあるべき姿が明示されていないケースが多くあります。このため、まずロジックツリーを使って問題を以下のように切り分け、可視化し共通認識を持つことが大切です。解決策を提案する際にも、すぐに実現可能なことだけでなく、様々な解決案を考慮し、長期的に良い方向に進むための基礎となる資料を作成していきたいです。 MECEをどう活用する? また、数値データでない分析においてはMECEを意識し、作業に取り掛かる前にWhatやWhereに時間をかけることが重要です。変数分解も選択肢として考慮し、「分析の本質は比較であり、意思決定のためのものである」という点を忘れずに実践していきます。今後は部下に教えることも視野に入れ、データを整理しながら作業するように心がけたいと思います。

戦略思考入門

集合知で拓く戦略の新視点

議論の偏りは大丈夫? サンライズ社のケースを通して、課題解決に向けた議論が偏った論点だけでは進まないことを学びました。まず、各自の直近の関心事や体験によって視野が狭まる可能性があるため、客観的な課題分析が不可欠であると実感しました。 フレームワークは何故有用? 課題に取り組む上で、PEST、3C分析、SWOT分析、バリューチェーン分析といったフレームワークが非常に役立つことがわかりました。特に人事部に所属する立場として、バリューチェーンの観点から戦略を考えることの重要性を感じました。 経営者視点はどう? 戦略策定においては、経営者の視点を持ち、ジレンマを恐れずに行動すること、また他社の意見を積極的に取り入れることが大切です。バリューチェーン分析により企業の優位性の源泉を探ることで、基本戦略の構築や改善が促進されると考えています。 SWOTをどう活かす? さらに、SWOT分析を通じて現在の業界や自社の状況をより深く理解し、それを自部門の戦略構築に活かしていく姿勢が求められると感じました。具体的な人事施策を企画・実行する際には、各部署のニーズや成果を定量・定性で把握することが重要であり、これが強固なバリューチェーン形成や組織の強化につながると実感しています。 全体影響をどう捉える? 今後は、日々の業務や制度、施策が全体のバリューチェーンにどのような影響を及ぼすかを意識するとともに、その視点をメンバーと共有していきたいと思います。経営者になったつもりで、独自の判断軸と基準を持ち、より良い意思決定を行うためにジレンマに果敢に向き合う姿勢が求められると感じました。また、他社の意見を取り入れ「集合知」を活用することも、今後の課題解決に大いに役立つと考えています。

戦略思考入門

視点を広げる戦略的思考の重要性

全体視点は必要? 経営者の視点で考えることに非常に感銘を受けました。目の前の仕事に没頭しすぎると、視野が狭くなりがちです。特に、自分の事業に専念していると、全体を見る視点が欠けることもあります。この問題に対して、私は全社的な視点を常に持ち続ける必要性を感じました。 恐れず選択できる? また、「ジレンマを過度に恐れない」という教えは非常に有益でした。例えば、納期と品質、短期的効果と中長期的効果の間で最も良い選択肢を見つけることです。この過程で、他者の判断基準を頭から否定せず、じっくりと考える姿勢が求められます。ジレンマを克服するためには、創造的なアイデアを粘り強く考え続けることが重要だと実感しています。 戦略の本質は何? 戦略的に考えることを「漫然と仕事をしない」と解釈しました。日常の業務に忙殺されているときこそ、大局的な視点を持ち、自分の視界を広げることが求められます。これから新しい領域にも取り組むことがあり、常に広い視野と多角的な視点を持つことを意識して仕事に取り組むつもりです。 全体戦略をどう見る? 日々の業務と全体戦略の関連性を意識し、短期的な結果にとらわれすぎないように心掛けます。常にその意識を持つことは難しいかもしれませんが、3年から5年先を見据えた考え方や動き方を忘れないようにします。そして、SWOT分析やPEST分析といった戦略フレームワークを実践で活用し、データに基づいた意思決定を心がけたいと思います。 戦略共有は有効? 戦略的思考に関するトレーニングを取り入れ、フレームワークや戦略分析の機会をチームで共有していくつもりです。時間が限られている中での優先事項として、この取り組みの重要性を増していきたいと思います。

「分析 × 意思」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right