アカウンティング入門

数字で読み解く経営の真髄

P/L分析から何を知る? P/Lの分析から、その企業がどのような価値提供を重視しているかを類推する手法を学びました。類似する業種や時系列による比較も有効であり、全体規模を見るとともに、特に営業利益や最終利益が売上高に対してどの程度の割合を占めているかに注目する重要性を改めて認識しました。また、サービス業では売上原価率がおおむね8割前後であることや、販管費が製造業より高い割合を占める点、研究開発費が販管費に含まれているという事実も理解しました。 価格設定の基準は? 起業時のサービスの価格設定や利益率を決める際、類似サービスを展開する企業のP/Lは非常に参考になると感じました。さらに、自身が提供するサービスの価値や、その価値を創出するために必要なコストや労力を整理し、原価や一般管理費として具体的に算出する作業の重要性を学びました。 情報検索はどうする? しかし、他社のP/Lを参考にしたいと思いながらも、ネット上では大企業の事例ばかりが見つかるという現状に直面しています。皆さんはどのような方法で情報を探されているのでしょうか。また、販管費や一般管理費をさらに細かく分類した項目を記載したP/Lが存在するのか、情報検索に行き詰まりを感じています。

マーケティング入門

販売不振を打破!魅せる視点の魔法

魅せ方で何が変わる? 他社商品の販売不振の原因を振り返る中で、魅せ方の工夫が顧客に与える具体的なメリットの表現がとても印象的でした。この体験は既存商品を見直す良いきっかけとなりました。 他社との違いはどこ? さらに、他社との比較において「比較優位」や「可視性」、「わかりやすさ」などの商品企画上の基本視点は従来から意識していました。しかし、使用可能性についてはあまり考えたことがなかったため、今後は自分の分析ツールとして重視していきたいと思います。 プロモーションはどう調整? また、商品企画とプロモーションは一連の流れとして実施されることが多いため、企画段階で意識するポイントに加え、市場導入時の適合性や試用可能性にも配慮して、最終的なブラッシュアップを図ることが重要だと感じました。これにより、より販売力の高い商品企画が実現できると考えています。 口コミの広がりは? そして、商品としての価値を重視して企画開発を進める一方で、口コミがどのように広がるかという視点から、商品が認知されていく過程をストーリーとして描くことも大切だと気付きました。目の前の担当商品のストーリーについて改めて考え、具体的で魅力的な企画を目指していきたいと思います。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

マーケティング入門

顧客の声に寄り添う学び

顧客へ魅力はどう伝える? マーケティングには多様な捉え方があり、人それぞれ認識が異なることを実感しました。私が学んだのは、マーケティングとは自社商品の魅力をきちんと相手に伝え、顧客に「自社の商品を選ぶ価値」を感じてもらうことだという点です。さらに、顧客のニーズを正確に捉え、顧客満足度を軸とした利益獲得を目指すプロセスであり、セリングとの違いについても新たに理解することができました。 IT現場の現実は? 一方、ITソリューションの開発現場では、顧客の要望や課題に取り組む中で、納期やコストの制約から必ずしも100%の顧客満足を実現できていない現実を感じます。自社にプロダクトがあるわけではないため、どのように顧客に選んでもらうかという課題は依然として大きく、顧客のニーズを的確に捉えることや自社の強みをどのように魅力として伝えるかが求められると感じました。 新規顧客獲得は? 今後は、顧客満足度の高いソリューション提案や開発案件をまず分析し、継続的に顧客からの要望があるプロジェクトで自社の強みを再確認・強化したいと思います。また、他社との差別化を明確に打ち出し、それを新規顧客の獲得につなげる取り組みを進めていきたいと考えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

マーケティング入門

顧客心理を探る!商品開発の新視点

顧客ペインポイントを探るには? あいまいな顧客ニーズである「あると便利」という程度では不十分であり、顧客がお金を払ってでも解決したいと感じるペインポイントを解決することが重要であると学びました。ペインポイントを見つけるためには、顧客の徹底的な分析が必要です。 食品業界の顧客分析の難しさとは? 特に食品業界では、顧客の潜在意識やペインポイントを探るのが難しいと感じました。なぜなら、消費者は目的を持って購入するというより、その場の気分で選択することが多いからです。それでもヒット商品と呼ばれるものは存在するので、それらをさらに分析していきたいと考えました。今後、新しい商品を企画・開発する際には、消費者の具体的な喫食シーンを考慮しながら、よりニーズを満たすものを作りたいと思います。 本当の顧客ニーズを読む訓練をしよう また、顧客の本当の気持ちを捉えられるように訓練したいと考えています。具体的には、講義で言及された「コンビニで新商品を見て、その商品がどのような顧客のどんなニーズを満たすために発売されたのか」を考える練習を日常的に行いたいです。こうした気づきを自分なりにまとめて商品企画に活用したいと思います。

戦略思考入門

戦略で広がる視野、新しい挑戦への一歩

戦略はどう選ぶの? 戦略には2種類あり、それは「計画」と「創発」です。これまで、戦略的思考とは、目的を設定し、現状を分析し、課題を明確にした上で方法を考える、つまり「計画」のイメージが強かったです。しかし、新しい業界を開発するなどの挑戦においては、これまでの経験や目の前の課題を解決しながら軌道修正を行っていく「創発」の方法もあることを知り、視野が広がりました。 チーム分けの意義は何? 業務では、専門的な業務を担当する専任者を導くため、チーム分けを行っています。この際、次の点を考えます。まず、なぜそのチームが必要なのか、その知識やスキルが必要な理由は何か。そしてチームを円滑に運営するための現状と課題は何か。さらに、その課題の解決と目的の達成をいつまでに行うかを設定します。 文章をどう整理する? チームを作るだけでなく、その意義をしっかり見つけ、円滑に運営できるような設計を行っていきます。そこで重要になるのが、文字に起こし、それを整理し、チェックを行いながら内容に抜け漏れがないかを確認することです。可視化することで、上流と下流の両面から文章を確認でき、より正確に課題を特定し、目的を設定する助けになります。

クリティカルシンキング入門

イシュー設定でプロジェクトが大成功した理由

イシュー設定がもたらす影響とは? イシューの設定の重要性を理解しました。イシューの設定によって問題解決方法が変わることを学びました。特に、「問いから始める」「問いを残す」ことで、本質的な課題を立案できるという点が印象に残りました。問いを立てるにも、まずはしっかりとした分析が必要だということも認識しました。 問いで課題解決をどう実現? 新技術の開発において、問いを立てることでより明確な課題解決が実現することが分かりました。問いから始め、問いを残し、問いを共有することでプロジェクトを円滑に進められることが分かりました。また、マーケティングを実施する際に、常にイシューを立てることで目的を明確にすることの重要性を再確認しました。 新技術開発のイシューの立て方 新技術を開発する際には、以下の行動をとり、イシューを立てていくことが大切です。まず、マーケティングの実施により分析を行います。次に、問いから始め、問いを残し、問いを共有します。そして、よりよいイシューを立てて進めるようにします。 資料準備でプロジェクトを支える さらに、プロジェクトでは、それが分かるような資料の準備を実施することも重要です。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

アカウンティング入門

数字が明かす経営の真実

大きな数値の秘密は? P/Lを読み解く際は、まず大きな数字に注目することが基本だと実感しました。売上総利益、営業利益、経常利益、税金等調整前当期純利益、そして当期純利益といった各項目の構造をしっかりと整理することで、全体のビジネスの流れや収益性の全容が見えてきます。 費用内訳はどう考える? また、売上原価率の違いや販管費、一般管理費の内容についても学び、単なる数字の比較ではなく、各費用の内訳から企業がどのようなポリシーでビジネスを展開しているのかを考察する重要性を感じました。特に、業界ごとに異なる費用構成は、それぞれのビジネスモデルの特徴を反映している点に着目することで、より具体的な分析が可能となります。 共通点はどこにある? さらに、同業者や異業種のP/L構造を比較検討し、自社やグループ企業の収益構造とはどのような共通点や相違点があるのかを探ることが、経営戦略の充実につながると実感しました。これに加え、新たなビジネスモデルやそれに伴う技術開発の場合、どのような収益構造が想定されるか、様々な視点から考察するディスカッションは非常に実践的であり、幅広い視野を養う良い機会となりました。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

「分析 × 開発」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right