戦略思考入門

差別化の壁を乗り越えるヒント

模倣リスクはどう考える? ポーター論におけるコスト戦略、差別化戦略、集中戦略の中で、特に差別化戦略は実際に実践する際の難易度の高さを実感しました。どれほど他社に真似されにくい戦略を立案しても、現実には数年以内に模倣されてしまう事例を目の当たりにしています。VRIO分析で模倣困難性があったとしても、社内でその戦略の理解が進まなかったり、新制度の浸透に時間がかかると、効果が半減してしまうのではないかと考え、さまざまな視点をバランスよく取り入れることの重要性を痛感しました。 採用戦略の課題は? また、自分が担当している採用プロジェクトでは、募集エリアが非常にニッチなため、応募が思うように集まらない状況です。これまで同じ職種で競合と戦略を立ててきましたが、今回、従来とは異なる職種、つまり、異業種の中での差別化戦略を検討し、母集団の形成を目指すことも一つの手段ではないかと感じています。そのため、現職から転職してきた方々の分析を進める必要があると考えています。

デザイン思考入門

限られ時間に咲く学びの花

どうして時間が足りない? 日々の生活の中で感じる課題は多岐にわたりますが、働く社会人としての立場から見ると、特に「時間が十分にない」ということが根本にあると感じます。このため、仕事以外の活動や用事が後回しになり、常に何かに追われているような感覚に陥るだけでなく、限られた時間で無理をしてしまい、寝不足や不規則な生活などの問題が生じています。現状では、仕事以外のタイムマネジメントやタスクマネジメントに課題を感じるものの、その解決策について今すぐ結論を出す必要はないと認識しています。 解決できなければどうする? また、定性分析を通じて課題の具体性を明らかにする取り組みの中で、「その課題が解決されなかったとしたら、どのような回避的行動に出るか?」という考え方に特に興味を引かれました。このエクササイズにより、課題が解決された場合と解決されなかった場合の両面を具体的にイメージでき、それが新たな解決方法を導く上で非常に有用な発想につながると感じました。

戦略思考入門

思考の幅を広げる6週間の学び

どんな学びがあった? この6週間を振り返ると、ライブ授業を通じて多くの学びを得ることができました。ライブ授業だけでなく、毎週の演習や任意で視聴する動画も非常に有益でした。特に、クリティカルシンキングで得た学びを通じて、自分の思考が偏ることを前提に、状況を冷静に俯瞰して適切な対策を打つことの重要性を理解しました。 業務でどう生かす? 私自身の業務では、会社の戦略を立てることはありませんが、組織の目標設定や日常のトラブル対応で、方向性や対応方針を決定する際に、今回学んだことを活かせると感じています。正しい状況判断と最適な対応策を導き出すために、この学びは非常に役立つと考えています。 どう実行できる? 業務の中で方向性や対応方針を検討する際には、即断せず、まず時間を取って状況を分析し、先を見据えたシナリオを意識して考えるようにしています。そのように時間を確保することで、これを習慣化し、学びの定着に向けた訓練を続けたいと思っています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

データ・アナリティクス入門

比較で拓く新たな視点

比較の価値って? 分析の際、最初に比較の視点が重要であると実感しました。私自身、比較に対して苦手意識がありましたが、実務を通して比較分析を実施するうちに、他者の意見が新たな視点を与えてくれることを学び、自分以外の考えを取り入れる意義を改めて認識しました。 情報分析の秘訣は? また、上司から課題解決のための情報分析を依頼されたときのプロセスも振り返りました。まず、分析の目的を明確にし、次に何と比較するかを検討します。データが少ない場合は割合で表し、表を作成した上で適切なグラフによって視覚的に表現します。その結果を客観的に評価し、必要であればさらに深堀りした分析を行うという流れです。 視点の工夫は? 最後の課題では、男女別や地域別といった切り口での分析が有効であると感じました。ただ、これらの視点に気づくまでに時間差が生じてしまいました。あらかじめスムーズにアイデアが浮かぶようになるためのコツがあれば、ぜひ教えていただきたいです。

クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

クリティカルシンキング入門

議論を変えるイシューの秘密

どんなイシューが有効? イシューの設定がまず何よりも重要です。どのようなイシューを立てるかによって、分析の方向性や解決策が大きく変わることを学びました。たとえば、「問い合わせ対応の長時間化がクレームの原因になっている」という例題では、「待ち時間を減らすためにはどうするか」と「問い合わせ件数を減らすためにはどうするか」という複数の問いを設定することが可能です。 議論の目的は何だろう? また、日常的な議論の場では、まず議論の目的を明確にすることが大切です。問いの形式にすることで、全員が何に注目すべきかを共有でき、議論が進む中で設定した問いからの逸脱を防ぐことができます。さらに、各参加者の発言を後から振り返り、内容が当初の問いに沿っているか、導かれた方針が妥当であるかを検証することが重要です。こうしたプロセスにより、1つの問いに偏ることなく、多角的な視点からアプローチし、見落としがないかを常に意識することが求められます。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

データ・アナリティクス入門

実践へつなぐ振り返りのヒント

プロセス整理の効果は? これまでの学びを活かして課題に取り組む過程で、プロセスごとに整理して考えることで、闇雲に取り組むよりも効率的に時間を短縮できることを実感しました。今後は、What→Where→Why→Howの視点を意識しながら課題解決に臨んでいきたいと考えています。実務ではまだ訓練が必要だと感じるため、講義で学んだ自分の身近で取り組みやすい内容から実践していこうと思います。 データ活用の成果は? 2ヶ月前に新たな環境やシステムが導入されたため、その効果を検証する目的でデータを活用してみたいと思います。もし改善が見られない場合には、改めてWhat→Where→Why→Howのアプローチを試してみるつもりです。 新手法の可能性は? また、A/B分析の活用場面は現状の職場では明確な適用例は思い浮かびませんが、新たに検査項目を導入する際には有効な手法となる可能性があると考えています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

「分析 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right