クリティカルシンキング入門

イシュー設定の重要性と技術活用法の探求

イシュー設定の重要性とは? イシューを設定することの重要さと難しさを実感しました。どのようなシチュエーションでイシューを設定するかによって、答えが大きく変わることを学びました。例えば、売上を上げるためのイシューにおいて、顧客の信頼を失っている時には価格を上げる決断は難しいですが、信頼を得ている時には価格を上げる選択も正しいと考えられます。状況をしっかりと分析し、適切にイシューを設定することが重要だと感じました。 技術の価値はどう測定する? 私たちの企業において技術の探索を行う際、技術の価値をピラミッドストラクチャーで分解し、その活用法を探ります。さらに、業界動向などの情報を収集し、以前は不採用としたイシューが現在適切であるかを再検討し、業務タスクに反映させます。また、上長に相談し、論理的な考えができているかフィードバックをもらうよう心がけています。 業務の方向性はどう深める? 日々の業務をピラミッドストラクチャーで分解し、その変化に応じてイシューを見直すことから始めています。上長とこのピラミッドストラクチャーを共有し、議論を通じて業務の方向性を組織全体で深めるよう取り組んでいます。

アカウンティング入門

P/Lが明かす企業成長の秘密

P/Lで儲けはどう見える? P/Lの構成から、企業の儲けの構造がどのように形成されるかを理解できました。事業コンセプトや経営ポリシーがP/L上に表れる点も興味深いと感じました。客回転数や客単価、材料費と売上総利益、販管費など、それぞれの項目にどのように影響があるのかがよく示されています。 講座の魅力は何? この講座は、アカウンティングの内容ながらマーケティングのような切り口も取り入れており、非常に刺激的でした。 経営分析はどう進む? 今後、企業の経営分析にこの知識を活用していきたいと考えています。業界内での相対比較に着目し、同じ市場内の自社、パートナー企業、クライアント企業、競合企業といった立場で比較しやすい指標を検討する予定です。また、過去3年から5年の推移を分析することで、変化点やその要因を把握できればと考えています。 比較で差は何? 具体的には、まず関心のある業界に焦点を当て、代表的な3社のP/Lを比較して各社の儲けの構造の違いを読み取ります。その後、決算報告資料を参照して各社の主張を確認し、さらに関連するメディアの記事を通じて有識者の評価なども調査していく予定です。

戦略思考入門

多角的視点で見直す戦略論

偏りと検討の重要性は? 今回の学習を通じて、戦略を考える際に自分の得意な考え方や方法に偏りがちな点に気づきました。そのため、フレームワークを用いて物事を多面的に検討する重要性を学びました。一面的な対策だけでは全体の整合性がとれず効果が限定的になってしまうため、さまざまな角度から得た情報を統合し、より効果的な戦略を策定する必要があると感じました。 社会的意義を考える? また、高い視点から自社の事業が持つ社会的意義を意識し、短期的な目標と長期的に実現したい姿とのバランスを保つことも大切だと学びました。これにより、戦略の全体像を捉えながら現実的な目標設定ができるようになりました。 市場と戦略の真意は? さらに、競合店舗のマーケティングリサーチを通して、顧客や市場全体のニーズ、そしてそれらを取り巻く社会情勢に対応した産業全体の戦略について考察する視点が身につきました。実際の売場を見る際には、その背景にある意図や戦略を分析し、PEST分析などの手法を活用して、どのような市場ニーズに応えているのかを考えるとともに、自社や自店舗が取るべき具体的な行動について再考することができるようになりました。

クリティカルシンキング入門

視点転換で広がる学びの可能性

自分の考えに疑問は? 個人の自由な発想は偏りが生じやすいため、自分の考えを批判的に見直すことが大切です。視点を意識的に変え、分析を分解し、MECEの考え方を取り入れることで、客観的に思考する訓練ができます。 なぜ対立が起きる? たとえば、打合せや会議の場では、目標が同じでも各々の意見に違いが出やすく、その結果対立が生じることがあります。こうした状況では、異なる視点から物事を考え、しっかりと分析するスキルがあれば、適切な方針や解決策の提案が可能になります。 説明はどう伝わる? また、資料作成やプレゼンテーションの場面でも、クリティカルシンキングを活用することで、客観的かつ正確な説明ができ、聴衆の理解と納得を促すことができます。これにより、議論が一層深まり、より質の高い意見交換が期待されます。 決定に注意する理由は? さらに、意思決定においても客観性を維持することで、後々のトラブルや余計な説明を避けることができます。まずは自分の意見に疑問を持ち、「なぜ?」と問いかけながら、漏れなく整理されたクリアな資料作成を心がけることが、客観的な思考方法の定着につながります。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

データ・アナリティクス入門

問題解決を極める!広告業での実践ノウハウ

プロセス分解が鍵となる? 原因の探求について学びました。特に、問題の原因を探る方法としてプロセス分解が有効であることを知りました。問題の箇所を絞るためには、プロセスを詳しく分析し、仮説を立て、その仮説を検証することが重要です。このプロセスには、文データ分析や仮説の検証などのステップが含まれます。 広告の効果検証とは? 広告業に携わる私にとって、こうした方法論は日常的に行っていることですが、改めて体系的に学ぶことの意義を感じました。特に、広告の効果検証においてはPDCAサイクルを用い、データ分析を通じて仮説を立て、その仮説を検証するプロセスが連続的に行われます。この週に学んだ内容は、日々の業務におけるステップのヌケモレの確認に活用していきたいと思います。 仮説の重要性を再確認? データに触れることを日常的に行い、データを一度集めただけで満足せず、常に仮説をブラッシュアップし続けることが必要です。同時に、データを継続的に収集し、これらを繰り返し行うことで課題解決ソリューションに繋げることができます。また、A/Bテストも広告業務で実施しており、学んだ内容を実践に活かしていくつもりです。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

議論と実践で広がる学びの輪

学びはどう活かす? ライブ授業では、講座の振り返りを行い、学んだ知識を実際の分析に生かす取り組みをしました。これにより、受講前と比べて明確に得たものがあると実感しました。 意見交換はどう効く? グループワークを通じては、自分の意見の推敲や新たな視点の獲得に大変役立ったと感じています。各人の考えを共有する中で、議論が深まり、より効率的に分析に取り組む方法についても考える機会となりました。 実践で何が見える? 実践演習では、講座の振り返りに十分な時間をかけることで、手を動かして考えることの重要性とともに、手を動かさずに思考することの大切さにも気づくことができました。フレームワークを活用しながら、分析のバランスや順序を意識して取り組む姿勢が印象に残っています。 目的と仮説の行方? また、目的の明確化や仮説設定の重要性を再認識しました。何を伝えたいのか、どのような問題を解決したいのかを最初にしっかりと考えることで、効率的な分析が可能になると感じました。ただし、仮説設定の段階でも実際に手を動かして考えたほうが良い面もあるため、両方のアプローチを意識することが大切だと思いました。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

アカウンティング入門

収益構造から読み解く経営戦略

収益構造はどう影響する? 学んだ内容の中で印象的だったのは、事業活動の収益構造が企業のコンセプトに大きく影響されるという点です。自社がどのようなコンセプトで事業を展開し、収益を上げていくのかを最初に明確にしておくことが重要であると感じました。そうしなければ、場当たり的な対応になったり、顧客のニーズを捉えられない、あるいは伝わらなかったりするリスクがあるからです。さらに、PLから読み取れる収益構造を基に、企業の特徴や課題について仮説を立て、検証する方法も学びました。 部署間比較で何が見える? この知識を活かし、まずは自部署の事業収益構造と、競合他社との比較から自社の強みや弱みを分析し、課題解決につなげたいと考えています。また、月次の採算会議や各会議で、自部署の課題や対策を検討する際にも、この学びを実践的に活用しています。さらに、自部署のPL(管理会計ベース)と他部署のPLを比較することで、各部署の特徴や利益の出し方にも注目するようになりました。今後は、競合他社のPL(財務会計ベース)も確認しながら、自社に不足している活動を明らかにし、経営層へ具体的な提言を行っていきたいと思います。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right