戦略思考入門

ナノ単科で学ぶ差別化戦略の極意

差別化戦略の真価は? ポーターの3つの競争戦略における差別化戦略は、競合他社に簡単に真似されないこと、そして持続可能であることが重要だと感じました。この点がとても印象的でした。通常、差別化戦略というと市場や競合に目が行きがちですが、VRIO分析を通じて自社の内部リソースからもヒントを得られるというのは新たな気づきでした。 フレームワークの連携は? また、動画学習で触れられたフレームワークはどれも重要で、「選択と集中」の考え方とも関連があり、それぞれが相互に補完し合っていると感じました。自社独自の付加価値サービスを提供し、収益性を追求する中で、差別化戦略は非常に有効であり、次の業務計画や中期経営計画策定の際にはぜひ活用したいと思います。 同業他社との比較は? さらに、同業他社の分析を行う際に、今回学んだ知識を活用することで、他者の戦略を理解する手助けとなり、それが自社の新たなビジネスのきっかけを生む可能性もあります。今後の業務計画や中期経営計画策定においても、学んだフレームワークを用いてマーケットや同業他社との比較を行い、自社の戦略が競争優位を獲得できるかを確認していきたいと思います。 自社活用の秘訣は? 最後に、どの理論やフレームワークにも利点と欠点があると思われるので、自社に適した要素を選びながら、業務にうまく活用していきたいと考えています。

戦略思考入門

シンプル分析で見える未来

基本の枠組みはどう? 戦略的に考える際、これまで想像していたような高度な分析やフレームワークの活用ではなく、まずはオーソドックスなフレームワークを適切に使いこなすことが大切であると学びました。それぞれのフレームワークで求められる分析の視点や、全体感を持ち偏りなく分析する点、各要素の整合性を保ちながら大胆に仕分けを行う意識が必要だと実感しています。 今後の事業戦略はどう? 自社の中期的な事業方向性を検討するうえでも、この考え方を活用したいと考えています。これまでは「顧客が~だから」「競合が~だから」「自社の強みは~」という議論のもとで方針や取り組みを進めてきましたが、最近のケーススタディを通じて、競合環境が見えづらい業界ならではの難しさを実感することとなりました。今後は、メンバーと議論を重ねながら、各種フレームワークを活用して事業方向性を決定していくつもりです。 3C分析、進め方はどう? まずは3C分析を丁寧に実施します。本講座で学んだように、市場(マクロ)と顧客(ミクロ)をそれぞれ分析し、誰が競合なのかを明確にする点に特に注力したいと思います。自らたたき台を作成したうえで、チーム内で意見を交換し、分析内容を深める予定です。また、分析を進める中で顧客や自社に関するデータが不足する可能性があるため、データ蓄積の仕組みの検討も並行して進める意向です。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

仮説と仲間が拓く未来

どうやって仮説を立てる? データ分析を始める際、いつもありがちな仮説で立ち止まっていた自分に対し、3Cや4Pといったフレームワークを活用して思考を整理し、仮説を立てる方法を学びました。仮説は単に立てるだけではなく、その検証も極めて重要であり、さらに施策を講じる際には顧客目線が不可欠であることを改めて認識しました。 意見交換は必要? また、仮説やアイディア出しの過程で、当たり障りのない意見だけではなく、否定的な意見や斬新な発想を取り入れることも必要だと感じました。一人の意見では偏りが生じやすいため、同じ目的に向かって柔軟な視点を持つ仲間との意見交換が、より良い施策を生み出す鍵になると実感しました。 基本指標をどう見る? さらに、Webマーケティングの基本的な指標であるPVやUUなどの知識は、今後欠かせない領域であると認識し、引き続きツールなどを活用した学習を進めていきたいと思います。過去にカスタマージャーニーマップを作成した経験から、自分とは異なる属性の視点を取り入れる重要性を痛感し、今後はより多様なシチュエーションを考慮して視野を広げる努力を続けたいと考えています。 集計分析で何が見える? また、クロス集計分析の手法は、現在携わっているアンケート業務において大いに役立つと感じ、今後も定量的な面から分析を深堀していくつもりです。

戦略思考入門

戦略的アドバイスで未来を切り拓く

戦略立案のコツは? ゴールの明確化や選択、そして独自性の確立は、戦略を立案し他者が活用することを考えると非常に重要であり、同時に高い難易度を持つと感じます。グループワークでは、大学受験を控える後輩への戦略的なアドバイスについて意見交換を行いました。このケースでは、後輩のモチベーションが高いものの、ゴールが明確でなく選択肢も多いため、どうアドバイスするかが課題でした。ゴールを明確にし、選択肢を絞ることの意義を伝える意見が出ましたが、同時にモチベーションが高いという新しい視点からのアドバイスもあり、大変勉強になりました。 現状分析のポイントは? 現組織の現状と課題としては、環境が大きく変わっているにもかかわらず、ここ2年間戦略に大きな変更がないことが挙げられます。この状況を打開すべく、「明確化」「選択」「独自性」の観点から適切な戦略を構築し、組織に適合させて高い成果を目指すことが私の任務です。 問題解決のアプローチは? 具体的には、現戦略における問題点を洗い出し、なぜそれが問題なのかを根拠をもって見直し、目的を再認識することから始めます。そして、目的に向けたアクションを制定し、それを簡素化することで、取るべきアクションを網羅し最適なルートを選びます。さらに、SWOT分析から得られた独自性を再確認し、それをどのように活用するかを考え、戦術に落とし込みます。

データ・アナリティクス入門

課題発見!データが導くヒント

データ分析は何に使う? まず、データ分析は単なる数値の羅列に意味を見出すのではなく、特定の問題を解決するために行うものです。いきなりあらゆるデータを収集しても、どの部分に着目すべきかがわからず、効果的な結果に結びつきにくいでしょう。したがって、まずは問題を明確に定義し、大まかな分析から始め、論理ツリーやフローチャートなどを活用してデータを分解します。この際、解決策に結びつくような意味のある分け方を意識し、比較対象を明確にすることが大切です。 問題解決はどう進む? また、問題解決のプロセスにおいては、「何が問題か(What)」、「どこに原因があるか(Where)」、「なぜその原因が生じたのか(Why)」、「どうすれば解決できるか(How)」という4つのステップに沿って、仮説をいくつか立てながら、検証を進めることが求められます。分析の際は、複数の仮説を網羅的に洗い出し、分析フレームワーク(3Cや4P、5フォース、PESTなど)を活用するのが有効です。例えば、ある期間の売上減少については、内部要因(販売店の比率、広告費、性年代別の購入者率、リピート率など)と外部要因(気温、感染症の流行、訪日外国人の数など)の双方を収集・比較し、ギャップが大きい部分に絞って深堀りを行います。最終的には、複数の解決策を挙げ、判断軸に基づいて最適な対策を選定するという流れになります。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

マーケティング入門

受講生が感じた顧客満足の魔法

マーケティングって何? 今回の学習を通じ、マーケティングという言葉は人によって捉え方に幅があり、その広がりを意識することの重要性を実感しました。マーケティングの基本的なサイクルとして、自社商品の魅力を正しく伝え、顧客にその魅力を感じてもらうことで行動変容(購入)に導くプロセスがあると理解しました。「顧客に買ってもらえるしくみ」というグロービスの定義は、顧客の立場に立ったマーケティングの考え方を示しており、非常に印象深く感じました。 セリングとの違いは? また、マーケティングとセリングの違いについて学びました。セリングは「売りたい商品」からスタートし、売上数量という成果に結びつくのに対し、マーケティングは「市場や顧客のニーズ」から出発し、顧客満足に基づく利益の創出を目指すという点が大きな違いです。この違いを理解することにより、常に顧客志向であることの重要性が一層明確になりました。 どうやって実践する? 今後は、販促施策の企画や検証の際にも顧客視点を軸に、顧客に選ばれる仕組みを意識していきたいと思います。また、アンケート結果を丁寧に分析し、その結果をもとにサービスやイベント運営に反映することで、より良い顧客体験の提供を目指します。さらに、日々の業務において住宅設備や住まいに関するトレンド情報も意識的にキャッチし、適切に活用していくことを心がけています。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。

データ・アナリティクス入門

ロジックで変える!問題解決のヒント

要素を分解する理由は? 要素を細かく分解して考えることの重要性を実感しています。ロジックツリーやMECEを用いることで問題解決に導く考え方は知っていましたが、実際の業務で活用する機会はほとんどありませんでした。しかし、例えば売上不足の原因分析において、感覚的な判断のみで進めると、実は客単価に問題があるにもかかわらず、売上数の伸び悩みにだけ着目してしまい、重要な視点を見落とす可能性があることを改めて認識しました。 良い切り口はどこに? また、悪い面ばかりに目が行きがちですが、良い切り口も取り入れることで全体の傾向が見え、適切な対策を講じやすくなると感じます。たとえば、自社で提供しているクラウドサービスの解約要因やアップセルの要因を分析する際は、業界、契約ユーザー数、利用部門、契約年数、ログイン回数などを軸に、理想と実際のギャップをMECEの視点で整理することが有用だと思います。 問題の整理はどうする? 今後、業務上で何かを分析する必要が生じた際には、まず直面している状況を具体的に整理し、問題(What)を明確に定めることが大切だと感じています。その上で、問題がどこにあるのか(Where)、原因は何か(Why)、そして解決策はどうあるべきか(How)をロジックツリーを用いて整理することで、問題解決の思考を習慣化していきたいと考えています。

クリティカルシンキング入門

生産部門のトラブル解決に光明を見出す学び

ゴール達成への基本戦略は? 以下2点について学びました。 1. 到達したいゴールに向けてマイルストーンを設定し、その時々でイシューを考え、それに対する打ち手を取る必要がある。 2. データをさまざまな角度から分析し、イシューを特定する必要がある。 業務としては製薬会社の生産部門におけるトラブル解決を担当しております。この知識を業務にどう活かせるか、以下の具体例が思い浮かびました。 トラブル解決に必要な視点とは? まず、年間目標や個々の業務における課題解決においては、到達したいゴールに向けてマイルストーンを設定し、それぞれのタイミングでイシューを特定し、具体的な対策を検討することが必要です。 次に、生産部門におけるトラブルの原因究明とその解決策の立案については、様々な角度からデータを分析し、イシューを特定することが重要です。これにより、より的確な原因分析と解決策の提案が可能になります。 メンバー育成に活かせるアプローチは? 最後に、部門におけるメンバーのキャリア開発と育成についても、前述の2つの原則を適用することができます。メンバーの成長に向けた目標を設定し、その達成のための具体的なイシューと打ち手を考えます。 以上のように、学んだ知識を活用して業務を進めていくことで、課題解決能力の向上や部門の効率化が期待できると考えます。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right