データ・アナリティクス入門

多角的仮説で導く最適解への道

仮説をどう見極める? 私は、思い込みや決め打ちで仮説を立てるのではなく、複数の仮説を比較するためのデータを適切に収集することの重要性を学びました。各種フレームワークを活用することで、分析に説得力を持たせることができると考えています。 ITの課題解決は? また、ITを通じて顧客に提供する際には、不具合の原因調査や課題解決に対して様々な解決法が存在することが分かりました。そのため、フレームワークを用いて複数の仮説を網羅的に整理することで、その場に応じた最適な結論を導き出すことができると感じています。

データ・アナリティクス入門

初挑戦!フレームワークで深掘り学び

どうして原因探る? 問題の原因を探るため、what、where、why、howという流れを意識し、その時々に応じた適切なフレームワークを活用することで、より効率的かつ効果的に分析ができると実感しました。 なぜ知識足りない? これまで体系的に経営学やマーケティングを学んだ経験がなかったため、自身のインプットが不足していると痛感しています。特に、フレームワークに関しては、その基本概念を理解していなければ活用が難しいため、具体的な活用例などと合わせながらしっかりと学んでいきたいと考えています。

データ・アナリティクス入門

ロジックで掴む成長のヒント

MECEってどう使うの? MECEの考え方は、必要以上に厳密に適用せず、優先度の高い事項をクリアにするための一助として活用することが大切だと感じました。分析の軸がぶれず、本来の目的に沿って問題点の整理ができる点が魅力です。 ロジックツリーは何? また、ロジックツリーを用いて要素を段階的に分解する流れは、問題解決における鍵となる要素の特定に非常に役立ちました。当初の計画値通りに進まない理由について、よりロジカルに原因を洗い出すことができたため、示唆出しの納得感が一層高まりました。
AIコーチング導線バナー

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right