データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

データ・アナリティクス入門

目的で変わるデータ分析の極意

目的は何だった? 今週の学習を通じて、データ分析は単に数字を集める作業ではなく、まず「何を目的に、どの項目と何を比較するのか」を考えることが重要だと強く実感しました。これまでの私は、手元にあるデータをただ集計し、そこから何か分かるのではないかと考えることが多かったのですが、その結果、正しい判断に至らない場合があると気づかされました。 本質は見えてる? 特に印象に残ったのは、分かりやすいデータだけに頼る生存者バイアスの考え方です。自分自身も、分析しやすいデータに引っ張られがちであったため、「本来見るべきものは何か」という視点を持つ必要があると痛感しました。 課題は何だろう? これまでは、商業部門や関係部署からの依頼で内容を十分に整理せずに作業を進めることがあり、その結果、意図とのズレや手戻りが生じることもありました。今回学んだ「目的と比較を意識したデータ分析」は、現在担当している業務にそのまま活かせると感じ、作業開始前の進め方を見直す良い機会となりました。 対策はどうする? 今後は、依頼を受けた段階で「何を明らかにしたいのか」「どの期間や条件と比較するのか」を必ず確認し、目的とゴールを整理してから作業に取り組むようにしていきます。一方で、実務では依頼元自身が目的を明確に言語化・整理できていないケースも多いと感じ、この場合、どこまでこちら側が踏み込むべきかという課題も感じました。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

戦略思考入門

学びを深める!フレームワーク活用法

学びの根拠はどう? 今までの学習内容を振り返りながら総合演習を行うことで、学びが一層深まりました。何か施策を行う際には、「現状が○○であるからこの施策を行うべき」「自社の資源に○○があるので他事業にも転用できる」といった根拠が必要です。この根拠は、現状の深い分析を通じて得られるものであると、改めて実感しています。 現状考察はどうなってる? 目先のゴールにのみ焦点を当てがちですが、現状の考察を怠らないよう心がけたいと思います。また、ビジネスフレームワークを活用することで、現状の情報を効率的に整理できることを体感しました。今後は、活用できる場面を増やし、効果的な情報整理を実現したいです。 部署の未来はどう? 自部署においても、先の目標やロードマップを描くと同時に、現状分析を網羅的に行うことの重要性を感じています。今後、新規事業を展開する予定があるため、現状を大局的な視点から整理し、価値や独自性の把握、範囲の経済を活かせるかどうかの考察が必要となります。 分析の手法は何? 現状分析においては、フレームワークを活用していこうと考えています。例えば、VRIO分析を使って自部署の価値や独自性を把握し、SWOT分析で内部・外部環境要因を整理する、そしてPEST分析でマクロ視点から情報を整理します。フレームワークにはまだ慣れていないため、まずは手を動かして情報を分析・整理する力をつけていきたいと思います。

データ・アナリティクス入門

目的と丁寧さで切り拓く成長の一歩

目的は本当に明確? 全体の学習を振り返る中で、まず「目的を明確にする」ことの大切さを実感しました。分析の目的を最初にしっかりと考えることで、効率的に検討を進め、目標に向かう道筋がはっきりしていくと感じます。 解決策はどう整理? 次に、「問題解決のステップに沿って丁寧に考える」ことが重要であると再認識しました。what、where、why、howといった視点を順を追って整理することで、論理的に整った考え方ができ、正しい解決策にたどり着けると感じました。 分析はどう区切る? また、分析とは「分けて比較する」作業であるという点が強く印象に残りました。難しいものという意識を捨て、シンプルにとらえることで、より具体的に物事を捉えやすくなったと感じています。 目的確認で効率化? さらに、頼まれた仕事や指示された業務においても、ただ漠然と取り組むのではなく、その目的をしっかりと確認することで、仮説が立てやすくなり、効率的かつ生産性の高い仕事ができると実感しました。自ら考え抜く姿勢が、意欲的な取り組みにつながるのだと思います。 学びはどう定着する? この講義で得た学びをノートにまとめ、復習を重ねることで自然な形で分析に向き合えるよう、自分の中にしっかりと定着させていきます。最初に浮かんだ解決策にすぐ飛びつくのではなく、常に冷静に考え、丁寧な検討を続けていこうと心に誓いました。

データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

リーダーシップ・キャリアビジョン入門

他部署との協力で夢への道を開く

今回の学習を通じて、以下の三つのポイントに留意したいと考えました。 目標はどのように? まず一つ目は、目標設定とゴールイメージの明確化において、6W1Hを意識することです。これは、目標とその達成方法を具体的に理解し、伝えるための重要な手法です。 相手をどう評価? 二つ目は、仕事を依頼する相手の客観的な分析です。他部署のメンバーと協働する際には、相手の知識やスキルをしっかりと見極める必要があります。「この部署ならこの程度は理解しているはず」という前提は危険です。したがって、仕事の目的や意義を明確に伝え、共感を得るよう努めるべきです。そして、相手がゴールイメージをしっかり理解した状態にすることが大切です。 任せ方は適切? 三つ目は、仕事を丸投げせず、かといって過度なマイクロマネジメントを避けることです。一度任せたら主体性を促すため、コーチングやフォローアップに徹し、例えば週次会議などで進捗を確認します。 進捗は順調? 現在、他部門と協業するプロジェクトをリードしています。この案件では、進捗を促進するために四半期ごとのマイルストーンを設定し、相手に日程計画を作成してもらうことを行っています。また、相手に案件の重要性を理解してもらうため、目的や狙いを週次で共有しています。もしも、当事者意識が不足している場合は、担当者の変更やエスカレーションも選択肢に含めています(これは最終手段です)。

アカウンティング入門

売上原価に潜む成長の秘密

売上原価の違いは何でしょうか? 企業分析を行う際、販管費と比べて業界やビジネスモデルによって売上原価の構成が大きく異なる点に着目することが非常に大切です。売上原価は売上獲得に直接関係するコストであり、各企業が採用する価値創造プロセスの違いによって、その内容が大きく変わってきます。学習中には、とある大手企業の事例からこの点の重要性を改めて実感しました。 事業分析の視点はどこでしょうか? まず、自社事業別のPLやBSの分析と、各競合企業の分析が必要であると感じました。当社はビジネスモデルの異なる複数事業の複合体であるため、各事業の価値創造プロセスの違いを意識した分析が求められます。この考え方で競合企業を調査していくことにも意義を見出しています。 利益上昇の理由は何でしょうか? また、売上総利益が前年比で大幅に上昇しているため、その要因を特定する必要があります。ここで注目すべきは売上原価です。原価は売上に直結する支出であるため、まずは売上構成の詳細やその推移を把握し、その上で原価の中身を詳しく調査することが基本になると考えています。 情報整理はどう進めるのでしょう? さらに、必要な社内データが複数のシステムで管理されている現状では、情報の整理が不可欠です。すぐに必要な情報にアクセスできるシステム環境が整えば、より迅速かつ正確な分析が可能となり、大いに業務改善につながると期待しています。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

マーケティング入門

顧客のペインを見抜く新視点

なぜ顧客は悩む? 「自分が欲しいものをわかっている人は少ない」という考えは、日常生活の中でよく感じるもので、直感的に理解できました。しかし、今週の学びからは、顧客が自ら抱える課題とその解決策が一体となった商品に出会ったときに、本当にそれを求めるのではないかという印象を受けました。すなわち、優れた商品とは、顧客にペインポイントを認識させ、その解消による心地よい状態を想起させるものだと考えざるを得ません。こうした視点から、ヒット商品は一層「すごい」と感じられます。また、良い商品を生み出すためには、課題発見、技術開発、魅力の伝達など、さまざまな要素を総合的に考える必要があると改めて認識しました。 どこで課題が見える? 今週学んだことの中で、特に現職に活かせると感じたのは、ペインポイントの発見です。どの立場においても、クライアントが既に期待している課題解決はもちろんのこと、本人が気づいていない課題を見出し、それが問題であると伝えたうえで、一緒に最適な解決策を模索することが求められます。現状、相手の状況を十分に把握できていなかったり、伝えるスキルに課題があると感じているため、今後はクライアントと向き合う際や情報収集・分析の段階で、どこにペインポイントがあるのかを意識して取り組んでいきたいと思います。さらに、ペインポイントを発見するための分析手法についても、今後の学習課題としたいと考えています。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。
AIコーチング導線バナー

「分析 × 学習」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right