データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

戦略思考入門

迷わず進める戦略のヒント

自ら作り出した不明確なゴールとは? 「現在地とゴールを定め、ゴールへたどり着く最短かつシンプルな道を探す」という考え方は以前から書籍などで学んでいました。しかし、それを知識として理解していても、実際には不明確なゴールや複雑な道筋を自ら作り出していることに気づかされました。この気づきは、自分を振り返る良い機会となりました。 他者とのディスカッションの効果は? また、皆さんとのディスカッションを通じて、多くの方が似たような悩みや課題を抱えていることを知りました。この共同行動を通じて、他者の考えに触れることで、自分一人では得られない新たな気づきや学びが得られると感じ、学ぶことへの意欲が一層高まりました。 プロダクトへの学びの適用法は? 現在、私が取り組んでいるプロダクトや事業戦略においても、この学びは役立っています。研修後に、自分が多くのことを考えすぎて迷子になっているのではないかと感じ、「むしろ考えなくてもいいことを考えるべき」と思い至ったのですが、上司とのレビューでそれが指摘されました。この経験を通じて、自分を俯瞰して見ることの大切さを実感し、毎週の学びが大きな刺激となっています。 戦略計画の次なるステップは? 現在策定中の戦略計画には、必要な情報がある程度集約されています。そこで、まずは次のステップとして、①ゴールのシンプル化、②現在地の再設定、③やりたいことの整理、④「やらなくてもいいこと」の決定、⑤絶対やるべきことの明確化、を来週中に終えます。これを通じて、足りない情報や考えが見えてくるでしょう。その過程で、関係者との意見交換やアドバイスを受け、合意形成された戦略が生まれる可能性があります。 週ごとの研修をどう活かすか? 今後も週ごとの研修で得た学びを活かし、迅速かつ洗練された戦略を作り上げていきます。

リーダーシップ・キャリアビジョン入門

自分を再発見!リーダーへの第一歩

リーダーシップの鍵は? リーダーシップの3要素を学ぶ中で、リーダーシップが特定の生まれつきの資質によるものではなく、後天的に身につけるものであるという考え方を改めて実感しました。これまで漠然としたイメージしか持っていなかったリーダーシップが、具体的な3要素を通して自分自身の姿を振り返るきっかけとなり、目指すべきリーダー像と現状とのギャップを明確に整理することができました。 不安の根源は何? また、初週を振り返る中で、普段のリーダー経験に伴う漠然とした不安や自信のなさが内面に潜んでいることに気づきました。このネガティブな要素が、自分の可能性を十分に発揮する妨げになっていると感じ、原因となった経験を改めて振り返り、解釈を整理することが必要だと実感しています。 成果の見え方は? 日々の業務では、一緒に仕事を進める仲間とのチェックインや業務終了時の状態共有を通して、一日の成果を感じながら効率的な業務の進行を目指しています。こうしたコミュニケーションの中で、目的や目標の確認と達成状況を確かめ合うことの重要性を再認識しました。 会議の効果は? チームとのミーティングや1on1では、現状の把握から今後の目指すべき状態について話し合い、必要に応じたコーチングによって支援を行っています。また、プロジェクトの進行においては、目的・目標の再確認や進捗、困りごとの整理を通じて、課題解決に向けた具体的な行動を共に模索しています。 自信はどうなる? さらに、リーダーシップに対する自信の有無についての気づきを振り返り、尊敬する人との1on1でその考えを伺うことにより、自身のリーダーシップに対する理解と成長を図る機会を大切にしています。加えて、週次ミーティングなどで業務の目的・目標の確認や進捗、課題について共有し、全員で合意形成を進めていくことにも努めています。

戦略思考入門

捨てる選択が未来を変える

専門家に任せるの? 今回の学びを通して、顧客メリットを最大化するためには、あえて不要なものを「捨てる」選択が有効であるという考え方に気付かされました。自社で多機能を抱え込むとコストが増大する場合も多く、「餅は餅屋」の精神で専門家に任せる選択肢を検討することが重要だと感じました。 どの価値を優先する? また、何かを追求すれば別の何かを失うトレードオフの問題についても深く考えさせられました。高品質な商品と低価格な商品を同時に提供するのは困難なため、効用の最大化を狙い、両者のバランスが取れるポイントを見極める必要があります。さらに、どの要素に注力するか明確な方向付けを行い、メリハリのある資源配分を心がけるべきだと学びました。 業務の棚卸しは? また、「やらなくてもいい」業務の棚卸しの重要性も理解しました。大量のドキュメントや、念のため作成された監視設定をリストアップし、現状の業務内容を見える化することで、不要な作業を見極め、業務効率の向上に繋げることができると感じました。 捨てる基準は? さらに、何を捨てるかの基準を自分なりに設定することの大切さを実感しました。「本当に必要か」「ないと困るか」「頻度はどの程度か」といった基準に基づき、不要なものを削除し、トレードオフの課題に対しては、どちらの要素を優先するか、またはどのようなバランスが理想かを考えるプロセスが重要だと考えています。 実践の手順は? 最後に、具体的なアイデアの出し方とその評価にも取り組むことが必要だと感じました。設定した基準に沿って不要なドキュメントや監視設定の整理を進め、コスト削減とセキュリティ維持、または性能とのバランスをとるための施策を複数検討しました。その中から現実的で効果の高い方法を選び、具体的な実行手順を考えることで、より実践的な取り組みができると感じました。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

マーケティング入門

顧客を惹きつける表現の極意を学ぶ

商品魅力はどう伝える? 今週は「どう魅せるか」を考えることに集中した1週間でした。顧客に正しく商品の魅力を伝えるためには、その商品に対するイメージやメリットを理解し、効果的に伝えることの重要性を学びました。具体的には、ある商品の名称変更に伴うヒットの事例から、「はまる」表現の力を知ることができました。 普及要件はどう理解? さらに、新しい商品が普及するために重要な5つの要素、イノベーションの普及要件についても学ぶ機会を得ました。私の仕事では、新たな金融商品に関するサービスを開発する場面があるため、試用可能性などは今後の仕事に活かせる重要な視点となりました。 差別化の罠、どう防ぐ? 顧客を見ているつもりでも、つい競合他社との比較にばかり注目し、差別化を意識するあまり、肝心の顧客の気持ちから遠ざかってしまう「差別化の罠」についても理解が深まりました。これは、特に社内でよく起こることであり、慎重に対応する必要があると感じています。 普及のポイントは? 特にセキュリティトークンなどの普及していない金融商品サービスを開発する際には、イノベーションの普及要件が有効な指針となるでしょう。現在、同じ部署内で開発中のサービスはリリース直後で、提供予定の企業から機能のヒアリングを行いながらロードマップを作成しています。ただ、意見をそのまま取り入れようとする傾向があるため、それで大丈夫なのかとPdMに確認したいです。 実践にどう繋げる? 今週の学びが直接的に私の仕事に活かせる場面を具体的にイメージするのは難しいですが、自社プロダクトの開発チームと積極的に対話をしてみたいと思います。また、ナノ単科修了までに金融教育系のサービス企画書を完成させたいと考えており、その際に顧客が抱くイメージを設定し、サービス名(仮称)を検討したいと考えています。

クリティカルシンキング入門

メールに彩り、伝わる魔法

視覚化はなぜ効果的? <W4 学び、気づき> 視覚化することで、情報が2次元で処理できるようになり、文字情報よりも処理速度が早くなり、齟齬や誤認が起きにくくなることを学びました。これには、適切なグラフの利用だけでなく、伝わりやすい表現方法を身につけることが重要です。また、フォントや色についてはこれまで、自身の感覚や経験に頼って使用していましたが、今回学んだ知識を通じて、意識的に使い分ける必要性を痛感しました。 文書作成におけるポイントに関しても、普段から意識していた内容と大きなズレはなかったものの、具体的なポイントを学ぶことで印象がより強く残りました。特に「相手に知りたいと思わせる」工夫や修辞法の活用は、これまで十分にできていなかったため新たな気づきを得ることができました。 仕事でどう使う? <W4 自身の業務への当てはめ> 業務では、電話よりもメールで社内外と連絡を取り合うことが多いため、伝達内容が多くなると文章が形式ばり、堅い印象になることがしばしばです。そこで、今回学んだフォントや色、レトリックを取り入れることで、相手に分かりやすく伝わる文章を心掛けたいと思います。グラフに関しては、データの正確性に目を向けがちでしたが、今後は自分の主観ではなく、相手の目線を意識して作成や確認を行いたいと考えています。タイトル、単位、色など、細部にわたり注意を払っていきます。 実践はどう始まる? <W4 行動計画> 日々の業務ではグラフやパワーポイントの使用機会が少ないため、今回の学びは主にメール文書作成に活かす予定です。ポイントの強調や最後まで読み進めてもらえる工夫を取り入れるため、会社のスケジュールにリマインダーを設定し、毎朝前週の学びも含め確認するようにします。これにより、最低1ヶ月間は継続して意識を高め、実務に役立てていこうと考えています。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

クリティカルシンキング入門

思考力アップ!新しい自分を発見

なぜ再確認する? 批判的思考を意識することと、ピラミッド・ストラクチャーの活用の重要性を再確認しました。 本当に見えてる? まず、批判的思考についてですが、人には思考のクセがあり、論理的に考えたつもりでも偏りが生じることがあります。このため、「それって本当なのか」「他に視点はないか」といった問いを心がけることで、物事を多角的に捉えられるよう意識しています。以前よりこの考え方を実践しており、アウトプットの質が向上していると感じているので、今後も継続していきたいです。 本質は明確? 次に、ピラミッド・ストラクチャーですが、何かを考える際には最初に「本質は何か」「本質から外れていないか」を考え、イシューを特定することが大切です。これにより、的を射たゴールに向けて行動を開始できます。その後、メインメッセージとこれを支えるキーメッセージを組み立てることで、納得性の高い説明ができるようになってきています。こちらも引き続き意識していきます。 どう伝え上げる? 資料作成や後輩指導においても、これらの思考法が役に立っています。「なぜそれをやる必要があるのか」「どのような効果があるのか」「本当にそうなのか」と自問しつつ、読み手を意識した資料を制作することで、その質を向上しています。また、後輩の指導にも活かしており、単に修正点を指摘するだけでなく、その背景を説明することで指導の質が高まります。こうして後輩に教えることで、自分自身のスキルアップにもつなげています。 指導で躍進は? 最後に、後輩指導の際には批判的思考を持つことを重視し、「本当にそうなのか」という観点で指導をしています。これにより、自身と後輩双方の思考の質を高めていくことを目指しています。常に「本質は何か」「本質を捉えているか」といった観点を持ち続けるよう努めています。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

「必要 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right