データ・アナリティクス入門

平均で解く成長のヒント

各平均の意味は? 今回の学習では、平均の種類について再確認できた点が非常に印象的でした。単純平均だけではなく、幾何平均や加重平均といった、数字の根拠となるデータや分布の理解が求められる手法について、より深く考える機会となりました。 成長率の計り方は? また、期間全体の成長率を表現する方法が実践可能であることを知り、これまで感じていた疑問が解消されました。具体的には、自身の業務において商品のサイズ構成比や部署の成長率を算出する際、全体の加重平均や過去数年の傾向を示すための幾何平均が有用であると感じました。 実践スキルの磨き方は? とはいえ、数式自体は難しく感じたため、今後はエクセルを使用した計算方法など、より実践的なアウトプットスキルを磨く必要があると思っています。プレゼンテーションや説明の際に、根拠となる平均値を具体的なグラフなどで示せるよう、引き続き学びを深めていきたいと考えています。

データ・アナリティクス入門

目的意識で切り拓くデータ分析

目的は何のため? データ分析を始める際は、まず「何のためにこのデータを分析するのか」という目的意識を常に持つことが大切です。あらかじめ、どのような答えが得られるかをイメージしながら、分析に取り掛かると良いでしょう。 仮説と可視化の意義は? また、データ分析のステップとして、仮説思考に基づいたロードマップを設定することで、全体の目的や認識を共有し、より納得のいく結果が導けます。さらに、データを可視化すると、さまざまな視点や切り口、解釈の可能性が広がり、複数の判断軸を持つことができます。 実務の判断はどう? 実務では、データを活用する「ここぞというタイミング」を見極めることも重要です。そのために、何を解決したいのか、どのようなデータが必要か、データの収集方法やその後の展開についても具体的に考える必要があります。まずは、手元にあるWeb解析のデータを確認し、整理を進めてみましょう。

クリティカルシンキング入門

戦略で広がる新たな視点

制約はどう役立つ? 思考には、あらかじめ制約を設けることで考えやすくなると実感しました。自分の考えやすい方向に偏りがちで、整理せずにいきなり思考を始めてしまう癖があるため、最初に戦略的な整理を行うことの大切さを認識できました。理解している内容と実践できる内容には大きな差があるため、今後は意識して取り組む必要があると感じています。特に、職場ではこうした思考法の活用が求められているため、注意深く実践していきたいです。 整理はどう効果的? また、思考する前にしっかりと整理し、戦略を立てることが重要だと感じました。考えを段階的に分解し、体系的に整理することで、無駄を省いた論理的なアプローチが可能になります。その結果、施策を立案する際に必要な思考過程を明確にできると考えています。今後は、この整理された思考法を実践しながら、自分自身の思考プロセスをさらに発展させる方法について議論していきたいと思います。

マーケティング入門

体験が繋ぐ新たな価値

体験価値で選ぶ理由は? 「商品価値」よりも「体験価値」で選ばれる時代です。ターゲットの日常や習慣、使い方、そして抱える困りごとに合わせた販路や流通の設計は、ブランド体験を成立させる鍵となっています。 どう創る体験価値? また、顧客とのコミュニケーションの中で、いかに体験価値を上手に創り出すかが重要だと感じました。自社の商品についても、既存の販路に加え、意外なチャネルを通じて体験価値やコミュニケーションを提供することで、新たなターゲットにアプローチできる可能性が広がります。 生活提案は何に? さらに、商品の性能だけを訴求するのではなく、生活シーンに根ざした提案へとシフトすること、そしてパッケージや販促物に「使う時間や気分」を意識したキャッチコピーを取り入れる工夫が必要だと学びました。こうした取り組みは、使用シーンごとの魅力的なネーミングをシリーズ展開することにもつながると考えています。

データ・アナリティクス入門

実践へつなぐ振り返りのヒント

プロセス整理の効果は? これまでの学びを活かして課題に取り組む過程で、プロセスごとに整理して考えることで、闇雲に取り組むよりも効率的に時間を短縮できることを実感しました。今後は、What→Where→Why→Howの視点を意識しながら課題解決に臨んでいきたいと考えています。実務ではまだ訓練が必要だと感じるため、講義で学んだ自分の身近で取り組みやすい内容から実践していこうと思います。 データ活用の成果は? 2ヶ月前に新たな環境やシステムが導入されたため、その効果を検証する目的でデータを活用してみたいと思います。もし改善が見られない場合には、改めてWhat→Where→Why→Howのアプローチを試してみるつもりです。 新手法の可能性は? また、A/B分析の活用場面は現状の職場では明確な適用例は思い浮かびませんが、新たに検査項目を導入する際には有効な手法となる可能性があると考えています。

データ・アナリティクス入門

実践と洞察で未来を拓く

実践学習の効果は? 学習内容を実践的に活用しようとする姿勢が素晴らしく、データ分析においてもその洞察力が十分に発揮できると感じました。今後は、可能性や必要なデータをより具体的に整理していくことで、さらに充実した学びに繋がると思います。 市場環境の見直しは? また、現状の市場状況や競合環境を鑑み、製品サイクルを考慮した上で複数の課題を明確にすることが重要だと感じました。優先順位を明確にし、実現可能な対策を現場と共に検討・実行していく中で、どのようなチェックポイントが必要になるのかも考えていきたいと思います。 部内議論の方向性は? さらに、まずは部内で現在考えている課題を洗い出し、複数の案を出し合う場を設けると良いと感じました。その上で、今後の進め方についてマーケティングや営業の各方面とも相談しながら、各自の役割分担を実施して課題解決に向けた取り組みを進めていくことが望ましいと考えます。

戦略思考入門

勇気で捨てる、未来を拓く

捨てる判断はどう? 勇気を持って不要なものを捨てる重要性と、その判断基準について多くの示唆を得ました。従来、「餅は餅屋に任せる」という考え方が自組織に浸透している状況ではあるものの、捨てるという選択が顧客の利便性向上につながる点は見過ごせません。行政組織のように多くの関係者や多様な市民を抱える場合、顧客の範囲を明確に絞り、複数の角度から検討する必要性を改めて実感しました。 業務設計を再考? 一方で、新規業務の設計においても「餅は餅屋に任せる」という考え方について再考することが求められると感じました。委託先は自組織の専門職としての役割を果たす一方、公共事業としての業務遂行を確認・監査する技術の維持や、専門職の育成も重要です。捨てる行為が短期的な利益につながったとしても、中長期的にはリスクに変わる可能性があるため、外注する範囲やその品質維持レベルについて慎重に設定する必要があると考えます。

データ・アナリティクス入門

データ分析とプレゼンの質を上げるコツを学ぶ

分析における比較の重要性を学ぶ 分析とは比較であることを学びました。データを扱う際にはサンプリングバイアスに注意し、何と何を比較するか、そして目的に沿った分析を行うための問いが重要であると理解しました。すぐに飛びつかず、まず一呼吸おいてからデータを取り扱うことが大切です。 土地選定にはどんなデータが必要? 土地の選定に際しては、エリアや距離といった比較可能なデータを蓄積し、入居率や地代との関係を探ることが必要だと感じました。また、社内説明資料を作成する際には、データの表現方法としてグラフや図をどう表現するかを学んでいきたいです。 事業組成には説得力向上が必須 事業組成の中では、なぜその事業を行うべきか、比較軸を立てた上で理解しやすいデータやグラフを使用し、プレゼン資料の説明力を高めることが必要です。これにより、事業化の打率を向上させることで部署や関係各所に貢献できるでしょう。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

戦略思考入門

差別化で自社の未来を切り拓く!

競争優位性の重要性とは? 自社の経営戦略を考える上で、競争優位性を維持するためには差別化が重要であると学びました。特に自社の強みを網羅的に分析するには、VRIO分析が効果的であることを理解しました。 VRIO分析の役割は? また、VRIO分析は来年度以降の事業戦略や営業戦略を検討するうえで非常に有益なツールであると認識しました。顧客との会話で、なぜその商材が必要なのかを深掘りしてヒアリングする際にも、差別化という視点を持つことで、新たな視点から情報を整理できると思いました。 差別化要素の再整理計画 今後は、まず2月中にVRIO分析を実施し、差別化要素を再整理したいと思います。その後、足りないケーパビリティを補うための活動を実践します。さらに、差別化要素の持続的可能性を向上させるために、日本人だけでなくローカルスタッフを巻き込み、要素維持が可能な環境を整備したいと考えています。

マーケティング入門

顧客視点で革新する商品戦略

顧客視点の違いは何? 「誰に売るか」と「顧客起点」、さらには「顧客起点」と「顧客視点」はそれぞれ異なる概念だと感じました。近年のビジネス書では、「顧客起点が正義」や「プロダクトアウトは悪」という見方が主流になっていますが、実際には、従来のプロダクトアウトの考え方に顧客視点を加えることで、新たな顧客層を開拓した事例も見受けられます。 企画段階はどう見る? しかし、企画段階において自社商品のパーセプションを明確に特定することは容易ではありません。商品がまだ完成していない状態で、単に「安くて高機能な商品」という説明をしても、ユーザーはそれだけでは具体的なイメージを持ちにくいと考えられます。 ユーザーは納得? 全く新しい商品のポジショニングを構築する際には、「本当にユーザーにその価値が伝わるのか」「実現可能な性能や機能が備わっているのか」を冷静に検討する必要があると思いました。
AIコーチング導線バナー

「必要 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right