データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

クリティカルシンキング入門

MECEで問題解決の達人になる!

何故分解は必要? 物事を分解することの必要性と「MECE」という概念の重要性を学びました。分解することで問題の本質や解決策が見えやすくなり、取り組むべき課題が整理されることに気づきました。また、MECE(漏れなく・ダブりなく)というフレームワークを用いることで、重複や漏れを防ぎ、全体を効率的に把握できるとわかりました。MECEを活用することで、分析や意思決定の精度を高め、効果的な解決策を導き出すことができると感じました。 どうやって結果を整理? 現在の仕事の結果をさらに向上させ、周囲に効果的に伝えるためには、結果を分解して理解を深める時間が必要だと感じています。分解を通じて、各要素の役割や改善点を明確にし、全体像を把握することで、的確なアプローチや改善策を見出せるようになります。また、分解した内容を周囲に伝えることで共通の理解を促し、チーム全体の成果向上にもつながると考えています。このプロセスを意識的に取り入れ、持続的な成長を目指したいです。 学びをどう実践? 学んだことを実践することも重要だと感じています。知識やスキルを仕事や日常に取り入れることで、単なる知識の習得にとどまらず、理解が深まり、より確実なものになります。実践を通じて得たフィードバックや気づきをもとに改善を重ねることで、さらに成長し、より良い結果につなげられると信じています。まずは一歩を踏み出し、学びを行動に移すことを意識していきたいと思います。

戦略思考入門

業務を捨てて本質に集中する方法

不要な業務をどう選定する? 本質的な業務に注力するためには、不要な業務を選定することが大切です。これには、「対応しない」「あとで対応する」「外部移管をする」といった選択肢があります。業務を捨てる判断を行う際の重要な判断軸として、「利益が出るか」「現場でうまく運用できるか」「会社の方針に合っているか」「法令やルールを遵守しているか」「公平性は担保されているか」などが考えられます。業務の目的や状況によってこれらの判断軸は変化するため、柔軟に対応することが求められます。 優先順位の低い業務は? 来期の部署の年間計画を策定する中で、財務の観点や会社の方針に基づいて優先順位の低い取り組みについては捨てるよう、上司に提案していく方針です。また、取引先に提案を依頼する際には、私たちの要望の中での優先順位を明確に伝えます。私が提案を行う時も、相手が本質的に何を求めているのかを理解するよう努めます。業務の中では、過剰な報告・連絡・相談の廃止や、会議用資料の作り込みすぎを避けるといった細かな改善も進めます。 判断軸の統一はなぜ重要? 捨てる要素に関する判断軸は、チーム内での認識を統一しておくことで意思決定がスムーズになると感じています。そのためには、上司と相談しながら捨てる業務の意識や判断軸の統一を図っていきたいと思います。上司に納得してもらうためには、根拠が必要となるので、数値化可能な部分はしっかり準備して提案するよう努めます。

データ・アナリティクス入門

問題解決力を向上させる仮説の立て方

仮説設定の重要性とは? 問題解決プロセスにおける「why」(原因分析・追究)や仮説について学びました。特に重要なポイントは次の2点です。 1. 仮説は複数立てること: - 「Aである」だけでなく、「Bである可能性」や「Aではない可能性」など、さまざまな仮説を立てて決め打ちしないこと。 データをどう活用する? 2. 仮説同士に網羅性を持たせること: - データを評価する際、「何を見れば良いのか」「何と何を比較すれば良いか」「意図をもって何をみるか」といった視点を持つことが重要です。 - 仮説を確定させるためのデータだけでなく、「比較するための」データ収集も忘れてはいけません。 - 関連性のあるデータをより多く集めて分析することで、意思決定の精度が高まります。 進捗管理にどう活かす? この学びは、個人の事案対応力(受付件数と解決件数)や進捗が早い人・遅い人の原因追究(最終的には対策まで)に活用できそうです。日々の進捗管理と並行して、個人の適正業務量や対応方法の評価を行い、現行の運営が正しいかを検証するのに役立ちます。 業務適正の客観評価が必要? 現状を定量分析し、意図的に仮説を持って原因追究を深めることで、より良い業務推進力を発揮させるための手立てを見つけたいと考えています。担当者個人の特性を一旦置いて、より客観的に業務の適正さを評価することが必要だと感じました。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

データ・アナリティクス入門

A/Bテストで広告効果を最大化する方法

論理的思考の極意は? 「What」「Where」「Why」「How」の視点で物事を考える重要性を学びました。実践演習を通じて、A/Bテストを活用し、ターゲット層をグループ化して効果のあるかどうかを仮説を立てて検証するプロセスが重要であることを実感しました。また、コストや意思疎通、スピードなどを考慮して、外注か自社のデザイナーに任せるのか、またはAIに広告の表示を任せるかを判断する必要性にも気づきました。 広告の効果は見えてる? 自社でもYouTuberとのコラボ商品を展開していますが、それが実際にコンバージョンにつながっているかを検証することの重要性を感じました。ソーシャルメディアのユーザーごとの年齢や趣味を考慮しないと、ターゲット層と商品の間に乖離が生じ、購入につながらない可能性があると考え、A/Bテストを用いて広告の比較検討を行うことが非常に重要であると感じました。 クリック数は信頼できる? 普段何気なく見ているYouTubeチャンネルやInstagramなどのプラットフォームに表示されている広告が実際にクリックされる広告なのかを検証し、自社の広告もそのように費用対効果を考慮し、スピードやコスト、意思疎通などを考えて表示することを実践したいと思います。また、自社はテレビドラマとのコラボ商品が多いため、テレビの視聴率や視聴者に対して効果的なコンバージョンへの検証を進めていきたいです。

リーダーシップ・キャリアビジョン入門

フィードバックで部下を成長させる方法

部下との面談、どのように進める? 部下へのフィードバック面談では、上司が部下の気持ちに寄り添い、素直に至らなかった点を認める姿勢が必要です。上司は、部下に対して求めることを客観的に示し、具体的な事例に基づいてフィードバックを行うことで、納得感のある評価を実現することが求められます。これにより、面談が部下の前向きな姿勢につながる場となるのです。 リーダーの内面、どう変わる? また、講座を通じてリーダーはチームとしてのビジョンを明確にし、それを達成するためにメンバーへ影響を及ぼし導くことを学びました。リーダーの行動や自身の考え方を考えることで、理想とするリーダー像を描くことができました。 部下支援はどう実現? 部下との面談においては、彼らの立場に立って考えることで、前向きな方向性を持つよう支援します。部下が抱える不安に早く気づき、安心して仕事に取り組める環境を整えることが大切です。また、公平な立場で接し、信頼を築くよう努めることも重要です。 安心環境はどう作る? 頻繁に面談の機会を設け、メンバーと常に意思疎通を図りながら仕事を進めることで、納得感を持った状態を維持します。問題が発生した際にはすぐに解決し、仕事に安心して臨める状況を保つよう心掛けます。さらに、「地域のお客様に必要としてもらえる店をつくる」という軸をしっかりと持ち、メンバーの能力を最大限に生かしていく方向で進めます。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

目的で広がる分析の世界

分析の目的は何? 分析は、目的に応じた比較作業として位置づけています。分析の際には、まず目的を明確にし、その目的に沿った仮説検証に必要な項目とデータを収集、分類します。そして、比較対象や基準を設定することで、結果が意思決定につながるよう意識しています。 データの見せ方は? また、データの性質に合わせた見せ方を心がけることが大切です。データ分析で明らかにしたい事柄に最適な表現方法を選ぶことで、無駄なデータ加工を避け、例えば帰還した機体を基に無駄のない結論を導くといった論拠のあるアプローチが可能になります。 仮説と経験はどう関係する? 実際、Webサイトのアクセス解析を日常的に行っているため、データから仮説を立てる経験はあります。しかしながら、売上向上や認知拡大、新規ユーザの獲得といった本来の目的達成のために、どの分析手法を用いるべきか、その根拠となるデータ解析に結びつけることが必要です。 追跡設定の必要は? さらに、解析ツールにおけるデフォルト設定以外のトラッキングに関しては、どのデータを収集すべきかが不明瞭になりがちです。よって、まず目的をはっきりさせ、必要な要素を明確に把握することを心がけています。また、取得できるデータの切り出し方次第で得られるインサイトは異なるため、どのデータがあればどのような推論が可能になるかを意識し、分析スキルの向上を目指しています。

データ・アナリティクス入門

論理と実践で掴む成長

どうして論理で考える? 問題解決にあたっては、「what」「where」「why」「how」という順序に沿い、論理的な流れを重視することが大切です。各段階で仮説を立て、安易な原因の特定や根拠のない解決策にならないよう意識しています。 仮説の深掘り大事? また、仮説設定や要素の分解の際は、必要に応じて3C(Customer/Competitor/Company)や4P(Product/Price/Place/Promotion)といった手法を用い、偏らない分析・比較を心がけています。これにより、より具体的で納得できる解決策を導き出すことが可能になります。 どうやって迅速判断? 日々の業務では、あらゆる意思決定が求められる中、根拠と基準を明確にし、迅速に判断するスキルが不可欠です。社内外で目にする数字やデータに違和感や異常を感じた際は、すぐに原因分析を行い、問題解決に向けた対策に着手することが求められています。特に、決算報告や業績予想の資料作成、報告時には、正確な原因把握と的確な対策が必要となります。 資格取得どう進む? そのため、改めて決算書の読み方や作成方法を学ぶ必要性を感じています。既に購入している教科書や問題集に着手し、日商簿記の資格取得を目標に、継続的に学習を進めています。帰任後すぐに資格を取得するという目標を掲げ、計画的に勉強を進めていく予定です。

クリティカルシンキング入門

数字で拓く!問いの提案術

グラフで何が見える? まず、データ分析においてグラフ化の重要性を再認識しました。グラフにより数値を視覚的に捉えることで、抜け漏れがないかや新たな切り口で分解すべき点に気づくことができます。 仮説をどう活かす? また、仮説を立てた上で分析する手法の意義も感じました。意味のあるデータの切り分けが可能になり、仮説検証のサイクルを回すことで、より納得感のある結論に近づけると実感しています。 問い続ける理由は? さらに、常に問い続ける姿勢が大切であることも学びました。初めに思いついた主張や根拠、データの特徴に飛びつく傾向があったため、十分な納得感を得られなかった経験を踏まえ、問い直すことで提案の精度を高める重要性を認識しました。 IT戦略はどう選ぶ? 今回の学びは、IT戦略においてどの領域へ投資するかを見極めるアプローチに活かせると考えています。企業の意思決定者に対して誰もが納得する提案を行うため、数字を加工・分解して的確に課題を捉えるとともに、問い続けるプロセスで自分の案を磨いていくことが必要だと思いました。 説得力はどう磨く? 実務においても、この学びを実践し習慣化することで、より説得力のある提案を行っていきたいと考えています。加えて、数字を切り分ける際の観点や、MECEなどの枠組みについて、皆さんの意識している切り口を教えていただければ幸いです。

クリティカルシンキング入門

ピラミッドが導く説得の秘訣

相手に伝わる方法は? 他人に自分の主張を伝え、行動を促すために必要なスキルを学びました。特に、ビジネスの現場では、相手の立場に立ってわかりやすく伝えることが何よりも重要であると実感しました。その第一歩として、主語や述語を意識したアウトプットの基本を学びました。 論理の重ね方は? また、自分の主張を裏付ける論理を構造化する手法にも注目しました。すぐに結論に飛びつくのではなく、複数の切り口から論理を重ねることで、説得力や理解しやすさが向上することを体験しました。 仮説の組み立ては? さらに、不確実性の高い新規事業の推進においては、仮説を立てる際にピラミッドストラクチャーを意識することが有効だと感じました。まず答えのない課題を明確に特定し、数字を用いた分析や整理を行いながら論理を組み立てていくことの重要性を再認識しました。こうしたプロセスにおける、論理の柱をしっかり考える手間が、後の認識のずれや意思決定の遅延を防ぐ鍵であると考えています。 報告会の改善は? これからは、毎週の事業報告会で使用するフォーマットをピラミッドストラクチャー型に変更し、主張の根拠となる論理を明確に伝える工夫を続けていきます。また、部下が発信する意見に対しても、構造化されたアウトプットを意識したコミュニケーションを心がけ、より正確で効果的な情報伝達を目指していきたいと思います。

「必要 × 意思」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right