戦略思考入門

経済性の驚きと実践術

経済性の意味は何? 「規模の経済性」については、事象としては知っていたものの、用語としては初めて学んだため大変新鮮でした。また、「範囲の経済性」に関しては、適用する順序を誤ると、単に手薄でコストが高い状態を招く恐れがあるため、十分な注意が必要だと思いました。 活用されない理由は? さらに、場合によってはこれらの経済性が十分に活かされないケースが存在することも初めて知りました。フレームワークに依存せず、柔軟な対応が求められると感じています。 施策のタイミングは? 「ネットワークの経済性」は、顧客が広告施策を展開する際、施策のタイミングや訴求内容の決定において大いに役立つと考えられます。 育成法はどうする? また、「習熟効果」は、自社組織の運用面で、どのようなメンバーをどのように育成し、案件にあてるかという点で活用できると感じました。

データ・アナリティクス入門

平均だけじゃない!データの秘密

平均のメリットとデメリットは? 「平均」という概念について、その利点だけでなく短所も学びました。特に、母集団のデータが偏っている場合、平均は必ずしも母集団全体を正確に代表するとは言えません。そのため、平均値だけでなく、各個別の数値が平均からどれだけ離れているかという「偏差」に注意を払う必要があります。 データ分布はどう理解できる? まず、データを整理する際には、その分布の特徴を把握することが大切です。データが標準偏差を中心にどのように分布しているのか、また何が正常な範囲で、どの数値が異常値として判断されるのかを理解することで、日常的に得られる個別のデータに対して正常か異常かの判断が容易になります。また、やみくもに「平均」が母集団のデータを代表していると考えるのではなく、平均値が実際にデータの特性を十分に反映しているかどうかをまず確認することが重要です。

データ・アナリティクス入門

平均の裏側が見える瞬間

平均計算の選び方は? これまで「平均」といえば、すべてを足して割る単純平均を想像していました。しかし、データの重要度が異なる場合には加重平均、成長率や比率を扱う際には幾何平均を使うなど、状況に応じた適切な平均値の選択が必要であると知り、目から鱗が落ちる思いでした。 散らばりの重要性は? また、データの中心を示す代表値だけでなく、その中心からどれくらい離れているかを示す散らばり(標準偏差)の重要性も学びました。これにより、数値情報をより深く理解する視点が広がりました。 広告指標の活用は? さらに、web広告の運用効率などをより詳細に分析し、目的に応じた指標を活用してデータから正確な情報を読み取るスキルを伸ばしていきたいと考えています。まずは、分散などの指標を視覚化してみることで、思わぬ面白い発見が得られるのではないかと期待しています。

クリティカルシンキング入門

伝わる日本語、広がる未来

基本の意義は何? 初めは「ここにきて、日本語を正しく使う」から始めるのかと驚きました。しかし、正しい主語と述語の役割を理解し、手順を踏んで文章を書く方法を体系的に学べたことは大きな収穫でした。基本を大切にすることの重要性を改めて実感しました。 事前確認はなぜ? また、チームミーティングや部門外との調整の際の事前内容確認に活用できると感じました。自分では理解しているつもりで、イメージを共有して話している場合でも、相手が持つイメージとは異なる可能性があるため、誤解なく同じイメージを共有することが大切だと考えます。 伝わり方をどう工夫? 文章や話し言葉だけでなく、図示するなど相手に伝わりやすい工夫が必要だと感じました。さらに、事前準備を怠ると相手の時間を奪ってしまうという責任の重さを痛感し、今後は言葉や文章を正しく丁寧に使うことを意識していきます。

クリティカルシンキング入門

数字に惑わされぬ視点の磨き方

なぜ数値に固執する? 数字を分析する際、自分の仮説を証明しようと特定の数値にこだわってしまい、少しの分析で思考が止まってしまう癖に気づきました。本来、数字は客観的なデータとして取り扱い、そこから見えてくる問題の本質をファクトとして捉え、その後に物事を考えるステップを踏むことが重要だと感じています。 採用で見落とすポイントは? 採用業務においては、応募数、書類選考、面接通過、内定承諾といった時系列データを元に、過去の数値と比較しながら問題点や成功点を見極める必要があります。しかし、これらの数値だけでは、表面上は問題がなさそうに見える場合でも、実際には採用候補者の属性や自社の面接体制など、より詳細な要素に目を向ける必要があると痛感しました。こうした観点で情報を整理していくことで、よりクリティカルな問題解決に結びつく可能性が高まると考えています。

マーケティング入門

顧客の隠れた価値に迫る学び

顧客視点を再考する? 顧客視点で訴求しなければ、メッセージは響かないという点を学びました。同時に、隠れた顧客ニーズをいかに引き出すかが重要であり、そのためには仮説の検証だけでなく、仮説が誤っている場合の修正ポイントを明確にしておく必要があると感じました。 深層ニーズを見極める? 情緒的価値の視点からは、顧客の価値観が固定されていないことを理解しました。表面的な事象にとらわれず、より深層にあるニーズを見極めることが不可欠であると実感しています。 ミーティングの意義は? 具体的な取り組みとして、短い打ち合わせを繰り返すのではなく、時には十分な時間を確保し、リラックスした雰囲気で自由な意見交換ができる場を設定することが有効だと考えています。また、ニュースやSNSなど、さまざまな情報源を通じて業界トレンドを常に把握する努力も大切だと思いました。

データ・アナリティクス入門

仮説で読み解く学びの軌跡

仮説はどう進める? 業務においては、まず仮説思考を用いて検証を行います。複数の仮説を立て、できるだけ網羅性を持たせることが求められます。その上で、必要なデータを抽出し、仮説を検証します。仮説を裏付けるデータだけでなく、反証するデータも同時に集めることで、その説得力が増します。また、仮説をさらに深堀りして広げる必要があります。 データ不足の理由は? しかし、実際の業務では、仮説を立てても検証可能なデータが十分に得られず、結局その正否が判断できないケースが多々発生します。できるだけ具体的なデータを抽出して検証を行いたいものの、網羅的に仮説を立てるのは比較的容易であっても、その中から正しいものを選び出す判断は難しいです。特に、仮説を裏付けるデータが不明瞭な場合、裏付けするデータも反証するデータも得られず、結局何も行動できない事態が多く生じています。

クリティカルシンキング入門

学びを活かせる!視覚化で伝える極意

考え方から視覚化へ進化 Week01からWeek04までの学びを通じて、「考え方」や「文章化」から「視覚化」へと自らの理解が深まってきました。相手に何を伝えたいかを「視覚」的に表現することが重要で、学んだことが線として繋がる感覚を得ています。 最適なグラフ選びの重要性 「視覚化」の過程で、適切なグラフを選択することが大切です。データが時系列の場合は縦の棒グラフ、経緯や変化を伝えたい場合には折れ線グラフが推奨されます。特に、普段の仕事では「帯グラフ」を使う機会が少ないことに気づきました。 読んでもらえる文章を目指して 良い文章には目的性、読者理解、しっかりした内容、読んでもらえる要素が必要です。特に、タイトルやリード文に工夫を凝らすことで、興味を持たせることがポイントです。キャッチーなタイトルとアイキャッチを意識して作成します。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

デザイン思考入門

疑問から生まれるデザインの力

多様な視点が見えた? 同じテーマについて多様な視点が存在することを学びました。ユーザー目線で現状の仕組みが本当に適切かどうか検証する過程で、各メンバーが異なる観点から意見を述べるのが非常に印象的でした。また、デザイン思考に関しても、参加者それぞれの想いが交わり、ディスカッションが盛り上がった点がとても興味深かったです。 現状をどう問い直す? 現状に疑問を持つことの重要性を実感しました。従来の方法や制度がただ続いている理由だけで運用されている場合、それをユーザー目線で見直し、より使いやすい形に改善する必要があります。まずは現行制度の確認と再検討を行い、実際に受けた問い合わせや相談内容を反映させながら問題定義を進めることが大切です。さらに、可能な範囲で改善策を検討し、ロジックツリーなどの手法を用いて試行錯誤を重ねるプロセスが印象に残りました。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。
AIコーチング導線バナー

「必要 × 場合」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right