データ・アナリティクス入門

ゴール重視からの脱却と新たな挑戦

場合に応じたゴール設定の重要性 業務において、MECE(Mutually Exclusive, Collectively Exhaustive)の原則は理解していたが、実際にはゴールを重視し過ぎていたことに気づかされました。また、What Where Why Howといったフレームワークも頭では理解していたものの、実際の活用がうまくできていなかったと反省しました。これにより、もれなく分析する難しさを改めて認識しました。 漏れのない分析方法とは? 私は業務プロセスの変革や改善のアセスメント、プロジェクト推進を担当しています。そのため、網羅的な影響の確認と、漏れのない分析が重要です。特に抽出する方法については慎重に整理し、誤ったアウトプットを防ぐことが必要であると再認識しました。 ヒアリングシートをどう改善する? ヒアリングシートについては、ロジックツリー化してテンプレートとして使用していましたが、これを見直すことにしました。具体的には、粒度の確認を行いながら、シートを整理することが重要だと考えています。そして、現状、あるべき姿、理想とする姿を正確に区分けすることで、段階的なスケジュールの精度を高め、プロジェクト推進につなげたいと思います。

クリティカルシンキング入門

伝わる!わかりやすい資料作成術

グラフの使い方は? わかりやすい資料を作成するために気を付けるべきポイントを学びました。具体的には、グラフを使用する際は、文章の流れと同じ順番で配置し、伝えたいメッセージに合わせたグラフを選ぶことが大切だと感じました。また、テキストメッセージの場合も、フォントや色、アイコンの選び方が持つ印象を損なわないようにする必要があると理解しました。 文章作成の極意は? さらに、良い文章を作るには目的をしっかり把握し、読み手を意識した工夫が必要であることも学びました。資料作成と文章作成はどちらも、受け手に負担をかけずに情報を伝えることを目指すべきだと思います。 社内案内文の工夫は? この学びは、社内への案内文作成にも活かせると考えています。今まであまり意識していなかったアイキャッチの工夫を取り入れることで、従業員に読み進めてもらえる文章作りに挑戦したいと思います。 改善行動を促す方法は? また、改善を促す内容については、実績をもとにしたスライド資料を作成するなど、具体的な数値や根拠を示すことで状況を共有し、改善行動を促す資料と案内文を合わせて展開していく予定です。毎月の案内文も、アイキャッチを意識した内容に改善していきたいと考えています。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

クリティカルシンキング入門

問いで切り拓く未来

正しい問いは何? 問いから始めることの大切さを学びました。問いの内容によってその後の考え方は大きく異なるため、正しい問いを設定することが非常に重要です。また、設定した問いが後で忘れられがちであるため、常に問いを意識し続ける必要があります。問いを共有しなければ、議論がうまくまとまらないという点も意識しなければなりません。 どうやって問いを共有する? たとえば、マーケティングでは、まず何を問いとするのかを明確に設定し、メンバーとその問いを共有することが大切です。こうすることで、問いを忘れずに一貫した内容で実践することが可能になります。同様に、会議をファシリテートする際も問いを意識することで、議論が脱線した場合に素早く軌道修正できると感じました。 思考の偏りにどう向き合う? また、今回の学びを通じて、仕事でクリティカルシンキングを意識的に使用し、身につけることの重要性を再認識しました。日本語を正しく使い、データを分かりやすく伝えるとともに、問いから始める姿勢を業務に積極的に活用するよう努めています。そして、自分の思考が偏っている可能性を常に認識し、特に問いの設定についてさまざまな視点から考えられるよう心がけることが今後の課題だと感じました。

マーケティング入門

ターゲティングで売上アップの秘訣を学ぶ

商品に対する受け入れ先をどう定義する? どんなに優れた技術を持っていても、その商品の受け入れ先が定義されていなければ、それは「絵に描いた餅」に過ぎません。「誰に売るか」を明確にするためには、顧客を多様な視点でセグメンテーションし、ターゲティングを行うことで差別化したポジションを確立することが重要です。これにより、売上の最大化につながることがよく理解できました。 ターゲット層をどう絞るべきか? 私たちの自社商品はヘルスケア関連であるため、健康に関心が高い一定の年齢層をセグメント化することが求められます。そのターゲティングを行うには、さらなる切り口が必要です。たとえば、健康に興味を持ち、お金を投じる傾向のある高所得層や、特定のライフスタイルを持つ層に焦点を当てるという仮説が考えられます。 データ分析で見えるギャップは? 過去の自社ソリューションの購買データを分析し、イメージしたターゲットとのずれがないかを確認します。もし乖離が見られる場合、その原因を追求しなければなりません。また、「健康への関心✖️高所得」以外の新たな訴求ポイントを会議で洗い出し、自社のポジショニングマップを作成します。これをもとに、来年度の営業戦略の立案に活用します。

データ・アナリティクス入門

一歩先行くヒントは4Pにあり

仮説の幅をどう広げる? GAiLで4Pフレームワークを活用することで、仮説の幅を広げる経験ができました。この学びから、3Cや4Pフレームワークを活用し、反復してアウトプットする重要性を改めて実感しました。また、仮説の意義や目的についてもしっかりと学ぶことができ、日常の業務において自ら仮説を持つことの大切さを再認識することができました。 データで何が変わる? 一方で、「平均を算出したり標準偏差を求めたりするひと手間を惜しまない」「必要なデータがない場合は、仮説を裏付けるために自らデータを取りに行く」という点が特に耳に残りました。忙しさを理由に現状のデータだけで問題解決できると考えがちですが、より良い解決のためには、ひと手間をかける姿勢が必要だと感じています。 未来志向の仮説は? これまで、問題解決の仮説を立てる際には、過去のデータに依存する傾向がありました。しかし、現在の業務では将来に向けた視点が求められているため、思考のアプローチを変える必要を感じています。今後は、過去のデータだけに頼るのではなく、アンケートやインタビューなどを活用して新たなデータ取得に努め、4Pフレームワークを用いて幅広い仮説の検証に取り組んでいきたいと思います。

クリティカルシンキング入門

チームで紡ぐ課題解決の知恵

根本解決の問いは? イシューを明確にし、チームと共有しながら常に問い続ける必要性を改めて感じました。さまざまな角度から物事を分解することで、根本的な解決策を探ることが重要であり、その際、できることとできないこと、また優先順位を決めることが問題解決につながると実感しました。 議論の迷いは何? ミーティングでは、チームのイシューを合わせるのが難しくなる場面(具体的な話題に偏ったり、別のイシューに話が逸れる場合)が何度もありました。こうした状況を踏まえ、イシューを見失わないよう適宜わかりやすい形で提示し、イシューの出し方についても壮大になりすぎていないか、またわかりやすいかを意識してチームメンバーとすり合わせを行うことが大切だと感じました。 共有の工夫はどう? 今後は、イシューを特定しチームと共有できるよう、起こっている事象をより明確に説明できる方法を準備していきたいと思います。具体的な手段としては、事象を分解(MECEなどの視点やデータ分析を活用)し、わかりやすい言葉で伝える取り組みを進めていきます。また、相手に情報を探させることなく、必要な資料を整えた上で、常にイシューを意識したミーティングや会話を実現するよう努めます。

データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

クリティカルシンキング入門

文章がもっと伝わる!ピラミッド・ストラクチャーの実践法

意図はどう伝える? 相手に自分の意図を理解してもらうことの難しさを改めて感じています。特に文章で伝える場合、相手のリテラシーや考え方の違いを考慮して、適切な文章構成を作る必要があり、これは決して容易なことではありません。そこで、「ピラミッド・ストラクチャー」に基づいて、イシューの特定から論理の枠組みの構築、そして適切な根拠で支えるという手順で進めることが、論拠の正当性を確認するのに有効であると、改めて理解しました。 戦略は何を目指す? 次期の短期事業計画の戦略や戦術の立案においては、この「ピラミッド・ストラクチャー」を活用したいと思います。また、日常のコミュニケーションでは、学んだ「相手に伝わる文章」の作成に関する重要なポイントを念頭に置き、実践してみたいです。 具体策はどうする? 具体的な行動として、イシューの特定から始めて、論理の枠組みを考え、そしてそれを適切な根拠で支えるという「ピラミッド・ストラクチャー」を実際に試し、自分の論拠の正当性を確認してから計画に落とし込む予定です。日常のコミュニケーションでも、日本語を正しく使い、文章全体を俯瞰してトップダウンで文章を作成する手順を意識して、実際に取り組んでいきたいと思います。

クリティカルシンキング入門

振り返りから学ぶ成長のヒント

振り返りはなぜ大切? 振り返りの重要性を強調する場面が多くあり、これが大事であると実感しました。特に今週は、これまでの学びを総合的に見直し、どのように実践に活かすかを整理する良い機会となりました。 目標と業務の問い? 個人の業績目標に関しては、目標設定時だけでなく、進捗中であってもその問いが正しいか再考する必要性を実感しています。また、ルーチン業務の改善においては、日々の業務が本質的に必要であるか、そして最善の方法を取っているかを常に考えることが大切だと感じました。 意見はどう発信? 加えて、社内プロジェクトにおいては、単にトップダウンの指示をこなすのではなく、自らも積極的に情報を収集し、企画や進め方において自分なりの意見を提供する姿勢が求められています。 計画通り進んでる? 業績については、隔週で自身で業績と進捗状況を確認し、当初の計画と一致しているか、そして現状でも本質的であるかを、欠けている視点がないかどうかとともにチェックすることが重要です。 ルーチンはどう管理? ルーチンに関しては、日々意識することが理想ですが、難しい場合は気になる点をメモし、月に一度、そのメモについて調査し解消を図るようにしています。

クリティカルシンキング入門

データから読み解く顧客満足度の秘密

数字の分析で気をつけるべき点は? 数字を使用して分析する際には、与えられた数字をただ羅列するのではなく、状況に応じて自分で欄を増やしたり工夫をすることが求められます。どのような傾向があるかを分解する際には、仮説を立てるために意味のある分け方をすることが重要です。その際には、情報が漏れたり重複したりしないように注意が必要です。また、ひとつの傾向が見えたとしても、2つ目、3つ目の異なる傾向が存在しないか考えることが大切です。 商談の不満点はどこに? お客様との商談において、どの部分に不満を抱いているのかを分析することに挑戦したいと思います。例えば、お客様に会う前の段階なのか、会った時なのか、などの具体的な場面を考えます。不満の傾向が明らかになった場合、法人であれば業種や従業員数、個人であれば家族構成や年齢など、さらに詳細に検討して仮説を立て、それを実践に移してみたいと考えています。 顧客分析はどう進める? まず、これまでにご契約いただいたお客様や断られたお客様がどのような方であるのかを表にまとめます。そして、ご契約いただいたお客様にはどのような共通の傾向があるのか、断られたお客様にはどのような特徴があるのかを分析してみるつもりです。

「必要 × 場合」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right