データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

データ・アナリティクス入門

仮説と実践が導く成果の道

成果をどう目指す? データ分析を行う際、まず数字やデータに飛びつくのではなく、最終的にどのような成果を出したいのか、何を比較すればよいのかといったアウトプットのイメージを明確にし、客観的に整理することが重要だと感じました。実務での実践力と、学問としての知識習得の両立を意識する必要性も再認識しました。 論点はどう整理する? また、コンサル業務においては、定量分析を進める中で迅速に論点を明確にし、全体の論点を中論点・小論点に分解することで、検証しやすい構造を作ることが求められます。そのため、まず仮説を立て、正しい比較対象に基づいたデータ分析を実施することが大切だと考えています。さらに、このような思考法やプロセスをジュニアメンバーにも積極的に共有し、育成に役立てていきたいと思います。

データ・アナリティクス入門

目的明確!正しい比較で輝く分析力

なぜ正しい比較が必要? 分析の基本は、正しい比較にあります。多くの場合、手元にあるデータをいきなり集計や加工し、可視化に移ってしまいがちですが、まずは分析の目的を明確に整理することが大切です。その上で、適切な比較対象や指標を選ぶことで、より目的に沿った分析を行えるようになります。 意見に惑わされるのは? また、周囲の意見や上司の指示に流され、何のための分析か分からなくなってしまうケースも見受けられます。あらかじめ定められた仮説やストーリー通りの結果を出そうとする傾向も同様です。 目的を再確認すべき? そこで、まずは課題や分析の目的をしっかりと認識することが重要です。正しい比較と適切な切り口を選ぶことで、説得力のある自信を持った分析を実施していきたいと思います。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

平均の罠と中央値のひみつ

代表値はどう決める? 過去に単純平均や中央値を扱った経験はありますが、その意味合いまで十分に考慮していなかったと感じています。データの集団同士を比較する際、代表値として何が適切かを選ぶ必要があることを改めて認識しました。特に、年収などのデータでは極端な値が存在する場合、平均値がその値に引っ張られるリスクがあるため、グラフなどで可視化することが重要だと考えます。 KPI評価はどうする? また、営業活動のKPIを組織や個人単位で評価する場合、単純平均ではなく中央値で比較する方法を検討しています。これは、ごく一部の外れ値や大型案件の影響を排除するためです。さらに、年度末までの目標達成に必要な成長率については、幾何平均を用いて算出できそうだという印象を持ちました。

クリティカルシンキング入門

課題を読み解く分解と深掘り術

どうやって学びを活かす? 例題をもとに課題を読み解き、分解するプロセスはとても勉強になりました。この学びのおかげで、今後どのようなアクションをすれば良いのか、具体的なイメージが湧きやすくなったと感じています。ただし、グラフの比較や示し方に関しては理解が十分とはいえない部分があり、引き続きインプットを重ねる必要性を感じています。 なぜ説明は散漫になった? また、客先への提案時に、疑問や議題ごとに深掘りしないと話が散漫になり、質問に対して考えながら話すだけではまとまりのない説明になってしまうことを実感しました。今後は、一つひとつの疑問や議題に対してしっかりと深掘りを行い、相手にわかりやすく伝えるためのインプットとアウトプットを徹底していきたいと思います。

データ・アナリティクス入門

数字のばらつきが描く成功のヒント

標準偏差の重要性は? 実績分析ではこれまで、平均値を求めることで状況を把握していましたが、標準偏差を算出してデータのばらつきを確認することはできていませんでした。課題解決に必要な問題の特定には、データのばらつきを捉えることが重要であると気づいたため、今後はまずデータ全体のばらつきを算出し、大まかな傾向を把握してから詳細な分析に取り掛かるようにしたいと思います。 エリア別売上の差は? また、営業実績の把握においては、従来は主に各時点の数値の差を比較する方法を採用してきました。今後は、売上が特定のエリアに偏っているかどうか、そしてその要因が何であるかをデータからしっかりと導き出すために、ばらつきにも注目しながら分析を進めていく考えです。

戦略思考入門

数字で見極める捨て方改革

なぜ捨てるのが難しい? これまで、自分は捨てることを非常に難しく考えていたという実感を改めて持ちました。過去からの関係性を重視するあまり、本当に必要なものとそうでないものを見極めることが難しかったのだと思います。 どうやって選び取る? しかし、今回、明確な判断基準として数値やデータを用い、何を優先し何を捨てるのかを選択することが可能であると気付きました。売上拡大や利益率向上を目指して多くの改善テーマに取り組む中で、従来から掲げてきた改善テーマについても、意味を再検証する必要性を感じています。具体的には、以前から実施していた特定のコスト削減策について、他の施策と数値やデータで比較し、優先順位の低いテーマは見直す判断に至りました。

データ・アナリティクス入門

納得を呼ぶ仮説とデータの魔法

仮説の種類は何? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があると学びました。また、複数の仮説を立てることや、各仮説が網羅的にカバーされているかを確認する点がポイントとして挙げられています。 どんなデータが大切? さらに、分析や資料作成の際には、比較するためのデータ収集を行い、反論を排除する情報にまで踏み込むことが重要です。自分に都合の良いデータだけを集めるのではなく、あらゆる角度から納得感のある結論に導くために、仮説を立証するためのデータ収集と加工を繰り返すプロセスが必要だと感じました。また、報告や資料作成の際には、意識的に反論者の視点を取り入れることで、より説得力のある分析ができるようになると確信しています。

データ・アナリティクス入門

仮説と比較で切り拓く未来

分析プロセスの進み方は? 今回の学習では、データ分析の思考プロセスを体系的に学び、特に三つの重要なポイントを意識することができました。まず、仮説を持つことでプロセスが早く進むという点、次に、分析は比較により成り立つという点、そして数値とグラフの取り扱いが肝要であるという点です。 課題解決の秘訣は? また、自己の課題として、筋の良い仮説立案力を磨く必要性を強く感じました。そのため、幅広い関心を持ち、数多くの因果関係に触れることが重要だと捉えています。データ分析は、実際に因果関係を紐解く作業であり、社会に潜むさまざまな関係に目を向けることで、自然と論理的かつ効果的な仮説立案感覚が養われると実感しました。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right