アカウンティング入門

流動 vs 固定、財務分析の奥深さ

資産と負債はどう関係? 流動資産が流動負債を上回る状態が良いことを理解しました。しかし、固定資産と純資産の関係についてはまだ十分に理解できていません。新しい業界と伝統的な業界では、貸借対照表における固定資産の比重が異なることが分かりました。 返済能力はどう評価? 流動資産と流動負債のバランスを見る際に、短期返済が必要なものを即座に返済できるかを確認したいと思っています。業界特有の特徴を理解し、共通点と相違点を把握した上で、定量的および定性的に分析を進めていきたいです。 支援前に何を確認? 業務での使用イメージはまだあまり湧きませんが、損益計算書と同様に貸借対照表も詳細に確認し、顧客企業への支援を始める前に定量分析や定性分析をしっかりと行うことが重要です。また、数年分の貸借対照表を見て、その推移を確認することも必要です。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

クリティカルシンキング入門

文章力がUPする秘訣を発見!

なぜ文章が大切? 文章の重要性を再認識しました。分かりやすく簡潔な文章は、相手に伝える際に非常に有利です。ピラミッドストラクチャを意識すると、全体が理解しやすい文書を作成することが可能です。日頃から文章を書く練習を重ねることで、スキルは向上します。 必要情報の伝え方は? また、ドキュメント作成業務が多いため、関係するところは大きいです。ハンドブックや技術情報の広報文章などでは、特に必要な情報を正確かつシンプルに書くことが求められます。主語と述語の明確化やトップダウン型の説明は、特に重要だと考えます。 文章力はどう高める? 社内サイトの記事投稿など、文章を書く機会を意識して増やすようにします。その際には、ピラミッドストラクチャを意識しつつ、作成・チェックを行い、日常的に分かりやすい文章を書けるように訓練します。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

クリティカルシンキング入門

客観視で育む最適判断力

直感と客観視とは? 改めて、物事を客観的に捉える重要性を実感しました。自分の感覚に頼るだけでは思考の癖に陥りやすく、解くべき課題の本質を見誤るリスクがあると感じました。そのため、直感や経験だけではなく、冷静な客観視を意識することが重要です。 限られた情報でどう考える? また、正解が用意されていない問いに対して、限られた情報から最適解を導き出す思考力と、それに基づく意思決定力は、AIが普及した現代において非常に求められるスキルだと考えています。 意思決定の秘訣は何か? 普段の業務では、自らイシューを設定し、限られた情報の中で果断に意思決定を行う経験を積んでいきたいと思います。その際、どのような理由で判断を下したのかを、他者に明確に伝えられるよう、主張と根拠をセットで整理しておくことの必要性を改めて認識しました。

戦略思考入門

固定費と習熟度が創る現場革命

経済性と習熟効果はどう? 規模の経済性について学びました。固定費と変動費の違いを正確に分析することの重要性を再認識し、分析を誤ると規模の不経済に陥る可能性がある点が印象に残りました。また、習熟効果についても一定程度理解していたものの、製造現場では人が入れ替わるのは仕方のない事実であるため、個々の熟練度に過度に依存しない設計やマネジメントが求められると感じました。 自動化の影響はどう考える? 製造現場では、自動化やAIの導入により、人が関わる部分が次第に置き換えられています。こうした変化を進めつつも、システムの導入によって新たな不具合が生じる可能性や、重要な業務においては依然として人の習熟度が影響を与える点に注目しています。そのため、こういった課題についても分析し、適宜改善策を講じていく必要があると考えています。

デザイン思考入門

とことんユーザー体験を追求する

ユーザー体験はどう感じる? 金融機関で個人株主向けのサービス開発に携わる中、金融機関であるがゆえに自分自身で個別銘柄の株を購入できず、ユーザーとしての体験がなかなか得られない状況です。一方、投資信託は購入可能ですが、商品が多岐にわたるため、ある程度ユーザーターゲットを絞る必要があると感じました。 夢中になる理由は? また、業務から離れて、自分が真に夢中になれることを事業化するシナリオを考えると、デザイン思考の本質により迫れるように思います。現在の業務ではユーザー体験を得にくいため、一言で言えば「とことんユーザーになる」ことが大切です。そして、チームは多様な専門性を持つ少人数体制が理想的だと考えます。こうした視点は、現職での取り組みとは対極に位置しており、職場でのデザイン思考活用には伸び代が限られていると感じました。

戦略思考入門

日々の意識が未来を創る

全体振返りで何を感じる? 今週は全体の振り返りを行いました。本講座では、ありたい姿に向けてどのように進め、実現の確率を上げるかについて学びましたが、既に忘れかけている項目があることに気づき、日々の意識がいかに大切かを改めて感じました。 成果施策の効果は本当? 数字で成果が見込みやすい施策については、現状の取り組みが本当に効果的かどうかを再評価し、その上で必要な改善を行っていきます。一方、要員の育成など成果が数値に現れにくい施策に関しては、シナリオ作りからフレームワークを再度適用する方針を明確にして取り組むこととします。 日々の業務意識はどう? また、Q1の回答にも記載しましたが、使わなければ忘れてしまう内容に対しては、皆さんが日々どのような意識で業務に取り組んでいるのかを再確認することが重要だと考えます。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

クリティカルシンキング入門

多角的視点で広がる学びの力

切り口の多様性は必要? 切り口が一つだけだと、偏った答えになる可能性があることがわかりました。しかし、複数の切り口を見つけるのは難しいとも感じました。自分が導きたい答えを得るために切り口を模索するという方法もあるのでは、と考えました。 実務での発見と応用 実務では、複数の業務を同時に行っているため、チームの弱点や強みを発見することに役立つと思います。今年の自分の目標の達成にも、多角的な視点での分析が重要だと考えています。 マインドの数値化は可能か? 昨年一年をかけて取り組んだプロジェクトでは、マインドを数値化するのは難しいと感じていました。しかし、異なる切り口を探して、数値化が可能でないか再考したいと思います。現在数値化されている部分についても、他の切り口がないか再検討し続けたいと考えています。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

「必要 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right