データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

理論を実践に変える学び

講義はどう実感? これまでの講義やワークを振り返る中で、思考が体系化され、頭の中がすっきりと整理された印象を受けました。いくつかのフレームワークについては既に知識がありましたが、実際の事例に当てはめて考えることで、ただ「知っている」段階から実際に使えるかどうかが別問題であることを実感しました。何度もアウトプットすることの大切さを改めて感じました。 契約データの見方は? また、各種施策を検討する際には、過去の契約データを分析する場面が多くあります。その際、ロジックツリーを用いて漏れなくダブりなく問題を整理し、複数の仮説を立てることの重要性を再認識しました。特に、契約データの項目選定や社外データの活用といった、目的達成に必要な分析手法を実践する意義を感じています。 SQL学習の計画は? 今後は、社内データを正確に取得するためにSQLの習得にも力を入れます。具体的には、オンライン講座を活用して4月から6月頃までに学習を完了させる予定です。 手書きの効果は? さらに、ロジックツリーやその他のビジネスフレームワークについては、パソコン上で作業するのではなく、あえて手書きで取り組み、自分の中に定着しているかどうかを確認しながら実践していきたいと考えています。 アウトプットをどう伸ばす? 実践的なデータ分析のアウトプット力を強化するため、関連する書籍や講座を活用し、9月までに数多くのアウトプットを経験して実力アップを目指していきます。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

デザイン思考入門

顧客視点で描く安心サイト改革

ホームページの改善ポイントは? 自社のホームページを改めて顧客目線で確認したところ、改善すべき点が見えてきました。特に、ターゲットとなる65歳以上の高齢者やその家族に配慮したデザインやレイアウトが十分でなく、文字が小さかったり背景と重なって見づらい部分があると感じました。また、各コンテンツの配置が分かりにくく、利用者が最も知りたい「アクセス」や「診療科目」の情報が深い位置に隠れている点も問題です。こうした点を患者さん目線に立って改めて整理する必要があると感じました。 プロトタイプ作成の意義は? また、プロトタイプの作成については、実際の作成機会は少ないものの、今後当院のミッション・ビジョン・バリューを展開するツール(ポスターやメッセージカードなど)の作成時に、いくつかのアイデアを出し合い、関係者と共有しながら進めることで手戻りを防ぎたいと考えています。 さらに、ホームページを作成する際には、こちらが伝えたい情報だけでなく、利用者が何を求めているかを踏まえ、双方の目的に沿った内容を掲載することが重要であると学びました。改めて顧客視点で当院のホームページの改善点を関係者と議論していく必要があると思います。 プロトタイプの制作に関しても、途中でこまめに作成し、関係者からフィードバックを受けることが大切だと感じました。細かい意見交換や認識のすり合わせを行うことで、手戻りや追加要件の発生を抑え、無駄な時間やコストの削減につながると考えています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

クリティカルシンキング入門

学びの姿勢で未来を切り拓く

6週間の振り返りは? 6週間を振り返ると、多くの学びがありました。クリティカルシンキングだけでなく、人生において学び続けることの重要性についても改めて確認できました。 大切な学びの姿勢は? 学びを進める上で重要な3つの姿勢として、目的を意識すること、自他の思考のクセを認識すること、問い続けることが挙げられます。また、相手視点での考察も重要であり、これを学びの前提条件として、今後も積極的に新しい学びに挑戦していきたいと思います。 問いと分析はどう? クリティカルシンキングでは、「問いは何か?」という点からスタートすることが大切です。分析過程においては、データの加工が必要であることを理解し、問いを解決するためには高解像度の分析を心掛けたいと考えています。そのためにはデータ分析の知識が重要です。また、主観に偏らず客観的に考えるために、フレームワークを活用する方法も知っておく必要があります。 知識の実践はどう? これらの知識は、以下のように自分の仕事で活用していきます。自部署の会議で発表する際は、明確な問いを基にPREP法を用いて内容を組み立てます。他者の言葉を理解する際は、相手の前提条件を考慮し、フォロワーシップを発揮して場の理解度を高めたいです。また、自分の考えをまとめる際は、アイデアを出す段階から問いを明確にし、誰に何を説明すべきかを意識します。対象に合ったデータ加工やスライド作成を行い、効果的なプレゼンテーションを目指します。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

アカウンティング入門

営業戦略の裏側を徹底解析!P/Lで見る必勝法

なぜP/Lを理解する必要があるのか? ビジネスのコンセプトやビジネスモデルを理解した上でP/Lを読むことが重要です。ビジネスモデルが分からないままP/Lだけを見ても、数字の示す意味が理解できなくなります。ビジネスモデルが分かると、数字、特に費用の内訳が想定しやすくなります。特にマーケティング費用は時折忘れがちになるので注意が必要です。これは、エンジニア出身者の弱点としてより意識して取り組むべき点です。 ビジネスモデルごとのP/L比較 現在、部門内のいくつかのプロジェクトのビジネスケースを見直す時期です。各プロジェクトのP/Lを確認し、特にサービス、ハードウェア+サービス、ハードウェアBtBなどのビジネスモデルごとにP/Lを比較しています。これにより、各プロジェクトの個別のP/Lが確認できる状態になり、横並びで比較することで違いが見え始めています。 効果的なP/L確認の方法とは? まずは、各プロジェクトから提出されるP/Lを来週1日1件ずつ確認していきます。確認すべきプロジェクト数は5つあり、1日1件確認する予定です。分からない項目については、各プロジェクトチームに確認して理解を深めることが重要です。一件ずつ質問を通じて理解を深めていくつもりです。 来週の目標とアクション宣言 グループワーク後の宣言として、米国時間の木曜日までにGlobisの課題を終わらせる予定です。また、プロジェクトのP/Lを見ての気付きも発表する予定です。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

クリティカルシンキング入門

クリティカルシンキングで自分を見直す方法

なぜ客観視が必要? クリティカルシンキングは、自分自身を客観的に見るためのもう一人の自分を作り出すことです。その目的は、何のために考えるのかを明確にし、一歩引いた目線で自分を眺めることで、目的に合った回答ができているかを確認することにあります。 どうして偏見を防止? 私たちは無意識に思考の偏りを持ってしまうことがあります。それを防ぐためには、頭の使い方を知り、反復トレーニングを重ねることが大切です。私は、この6週間、これまでと異なる頭の使い方を意識し、しっかりとトレーニングに励むつもりです。 顧客要求は本質か? 新規事業の立ち上げフェーズでは、顧客要求を整理しながら商品企画を進めています。顧客要求が本当に解決すべき課題に対するソリューションになっているかを確認するため、日々議論を重ねています。顧客との対話を通じて要求を導き出してきましたが、さらに深い議論を重ね、本質に近づきたいと考えています。また、議論が脱線しがちなため、「今日の議論の目的は何か」を常に意識し、必要に応じて軌道を修正したいです。 結論の真意は何? 議論を進める上で意識すべきこととしては、以下の点が挙げられます。まず、今この瞬間の議論が目的に合っているかを確認すること。そして、直感や思いつきで判断していないかを反省し、もう一人の自分がその考えをどう評価するかを考えます。さらに、現在の結論が本当に正しいのか、少なくとも「なぜ」をあと3回考えてみることが重要です。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。
AIコーチング導線バナー

「必要 × 確認」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right